Characteristics of Sulfides Distribution and Formation in the Sediments of Seonakdong River

서낙동강 퇴적물 내 황화물의 분포 및 생성 특성

  • 박성열 (부산대학교 사회환경시스템공학부) ;
  • 황경엽 (부산대학교 사회환경시스템공학부) ;
  • 이남주 (경성대학교 토목공학과) ;
  • 윤영삼 (낙동강물환경연구소) ;
  • 이상호 (부경대학교 건설공학부) ;
  • 김일규 (부경대학교 환경공학과) ;
  • 류권규 (동의대학교 토목공학과) ;
  • 황인성 (부산대학교 사회환경시스템공학부)
  • Received : 2009.03.13
  • Accepted : 2009.12.14
  • Published : 2009.12.15

Abstract

The sediment samples were collected from Seonakdong River and were analyzed for sulfide species such Acid Volatile Sulfide(AVS) and Elemental Sulfur(ES) and Chromium Reducible Sulfide(CRS). Then characteristics of the formation of sulfide species were investigated for six selected samples. Finally the relationship between environmental factors and sulfate reducing rate(SRR) was investigated using two selected samples. Concentrations of AVS and CRS were relatively high, which suggests that organics input to the sediments has been continued until recently and that potential of heavy metals leaching from the sediments is low. SRR in the sediments was closely related to fraction of fine particles(silt+clay) and also to dissolved organic carbon content of the sediment(DOCsed). The dependences of environmental factors such as organic content, temperature, sulfate concentration on the SRR was relatively strong in the selected experiments conducted with the samples from Noksan gate and Daejeo gate samples. The environmental factor dependencies were stronger in the Noksan gate samples than in the Daejeo gate samples, which is probably due to higher surface area of the Noksan gate sediments.

Keywords

References

  1. 김석구, 이미경, 안재환, 강성원, 전상호 (2005) 퇴적물 내 입도와 유기물 함량이 영영염류 및 중금속 농도에 미치는 영향, 대한환경공학회지, 27(9), pp. 923-931
  2. 유경균, 정진기, 손정수, 이재준 (2006) 광산폐수처리를 위한황산염 환원균의 응용, 한국지구시스템공학회지, 43(2), pp. 160-167
  3. 이남주, 김영도, 권재현, 신찬기 (2007) 수문운영에 따른 서낙동강 수질변화에 관한 이차원 수치모의, 상하수도학회지, 21(1), pp. 101-112
  4. 황경엽, 박성열, 백원석, 정제호, 김영훈, 신원식, 이남주, 황인성 (2007) 낙동강 퇴적물 내 중금속 존재 형태 및 용출 가능성, 상하수도학회지, 21(1), pp. 113-122
  5. Allen, H.E., Fu, G., Deng, B. (1993) Analysis of acid volatile sulfide and simultaneously extracted metals for the estimation of potential toxicity in aquatic sediments, Environ. Toxicol. Chem., 12, pp. 1-13 https://doi.org/10.1002/etc.5620120101
  6. Bruchert, V., Pratt, L.M. (1996) Contemporaneous early diagenetic formation of organic and nonorganic sulfur in estuarine sediments from St. Andrew Bay, Florida, USA, Geochim. Cosmochim. Acta, 60(13), pp. 2325-2332 https://doi.org/10.1016/0016-7037(96)00087-7
  7. Canfield, D.E., Olesen, C.A., Cox, R.P. (2006) Temperature and its control of isotope fractionation by a sulfate-reducing bacterium, Geochimi. Cosmochim. Acta, 70(3), pp. 548-561 https://doi.org/10.1016/j.gca.2005.10.028
  8. Fang, T., Li, X., Zhang, G. (2005) Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary, South China, Ecotoxicology and Environmental Safety, 61, pp. 420-431 https://doi.org/10.1016/j.ecoenv.2004.10.004
  9. Jorgensen, B.B. 1977. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark), Limnol. Oceanography., 22, pp. 814–832 https://doi.org/10.4319/lo.1977.22.5.0814
  10. Koschorreck, M., Katrin, W.P., Geller, W. (2003) Microbial sulfate reduction at low pH in sediments of an acidic lake in Argentina, Environ. Sci. Technol., 37, pp. 1159-1162 https://doi.org/10.1021/es0259584
  11. Lopes, S.I.C., Sulistyawati, I., Capela, M.I., Lens, P.N.L. (2007) Low pH(6, 5 and 4) sulfate reduction during the acidification of sucrose under thermophilic(55℃) condition, Process Biochemistry, 42, pp. 580-591 https://doi.org/10.1016/j.procbio.2006.11.004
  12. Macdonald, C.T., Smith, J., Keene, A.F., Tunks, M., Kinsela, A., White, I. (2004) Impacts of runoff from sulfuric soils on sediment chemistry in an estuarine lake, Science of the Total Environment, 329, pp. 115-130 https://doi.org/10.1016/j.scitotenv.2004.02.016
  13. Menert, A., Paalme, V., Juhkam, J., Vilu, R. (2004) Characterization of sulfate-reducing bacteria in yeat industry waste by microcalorimetry and PCR amplification, Thermochimica Acta, 420, pp. 89-98 https://doi.org/10.1016/j.tca.2003.12.032
  14. Parkes, R.J., Wellsbury, P., Mather, I.D., Cobb, S.J., Cragg, B.A., Hornibrook, E.R.C., Horsfield, B. (2007) Organic Geochemistry, 38, pp. 845-852 https://doi.org/10.1016/j.orggeochem.2006.12.011
  15. Peng, S.H., Wang, W.X., Li, X., Yen, Y.F. (2004) Metal partitioning in river sediments measured by sequential extraction and biomimetic approaches, Chemosphere, 57, pp. 839-851 https://doi.org/10.1016/j.chemosphere.2004.07.015
  16. Prica, M., Dalmacija, B., Roncevia, S., Krcmar, D., Becelic, M. (2008) A comparison of sediment quality results with acid volatile sulfide(AVS) and simultaneously extracted metals (SEM) ratio in Vojvodina (Serbia) sediments, Science of total Environment, 389, PP. 235-244 https://doi.org/10.1016/j.scitotenv.2007.09.006
  17. Stein, O.R., Borden-Stewart, D.J., Hook, P.B., Jones, W.L. (2007) Seasonal influence on sulfate reduction and zinc sequestration in subsurface treatment wetlands, Water Research, 41, pp. 3440-3448 https://doi.org/10.1016/j.watres.2007.04.023
  18. Tsukamoto, T.K., Killion, H.A., Miller, G.C. (2004) Column experiments for microbiological treatment of acid mine drainage low-temperature, low-pH and matrix investigation, Water Research, 38, pp. 1405-1418 https://doi.org/10.1016/j.watres.2003.12.012
  19. Whiteley, J.D., Pearce, N.J.G. (2003) Metal distribution during diagenesis in the contaminated sediments of Dulas Bay, Anglesey, N. Wales, UK, Applied Geochemistry, 18, pp. 901-913 https://doi.org/10.1016/S0883-2927(02)00183-X
  20. Vichkovbitten, T., Holmer, M., (2005) Dissolved and particulate organic matter in contrasting Zostera marina (eelgrass) sediment, Journal of Experimental Marine Biology, 316, pp. 183-201 https://doi.org/10.1016/j.jembe.2004.11.002