DOI QR코드

DOI QR Code

The opposite correlation between calcium ion and cyclic-AMP regarding the activation of microsomal triglyceride transfer protein in rat liver

  • Cho, Hyun-Jeong (Department of Biomedical Laboratory Science, College of Medical Science, Konyang University) ;
  • Kim, Hyeong-Soo (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, and Regional Research, Inju university) ;
  • Yu, Young-Bin (Department of Central Medical Research Institute, Kosin University Medical Center) ;
  • Kang, Hyo-Chan (Department of Medical Laboratory Science, Dong-Eui Institure of Technology) ;
  • Lee, Dong-Ha (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, and Regional Research, Inju university) ;
  • Rhee, Man-Hee (Department of Veterinary Physiology, College of Veterinary Medicine, Kyungpook National University) ;
  • Cho, Jae-Youl (School of Bioscience of Biotechnology, Kangwon National University) ;
  • Park, Hwa-Jin (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, and Regional Research Center, Inje University)
  • Published : 2009.10.31

Abstract

In this study, the effects of $Ca^{2+}$ and cyclic adenosine monophosphate (cAMP) on microsomal triglyceride (TG) transfer protein (MTP) activity were investigated in rat liver. MTP activity was high when liver contained low levels of cAMP, which was induced by administration of glucose, or high levels of total $Ca^{2+}$ and TG. However, MTP activity increased by high levels of $Ca^{2+}$ and TG was reduced in a dose-dependent manner by treatment with dibutyryl-cAMP (db-cAMP), a cAMP analogue. Conversely, when homogenates of liver from normal rats, with low levels of total $Ca^{2+}$ and high levels of cAMP, were incubated with thapsigargin, a $Ca^{2+}$-inducer, MTP activity was increased in a dose-dependent manner compared to control. Therefore, our results suggest that high levels of $Ca^{2+}$ cause hypertriglyceridemia through the elevation of MTP activity, as opposed to high levels of cAMP, which suppress MTP activity and inhibit hypertriglyceridemia.

Keywords

References

  1. Shelness, G. S., Ingram, M. F., Huang, X. F. and DeLozier, J. A. (1999) Apolipoprotein B in the rough endoplasmic reticulum: translation, translocation and the initiation of lipoprotein assembly. J. Nutrition 129, s456-462
  2. Rustaeus, S., Lindberg, K., Stillemark, P., Claesson, C., Asp, L., Larsson, T., Boren, J. and Olofsson, S. O. (1999) Assembly of very low density lipoprotein: a two-step process of apolipoprotein B core lipidation. J. Nutrition 129, s463-466 https://doi.org/10.1093/jn/129.2.463S
  3. Gordon, D. A. and Jamil, H. (2000) Progress towards understanding the role of microsomal triglyceride transfer protein in apolipoprotein-B lipoprotein assembly. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 1486, 72-83 https://doi.org/10.1016/S1388-1981(00)00049-4
  4. Bacon, B. R., Farahvash, M. J., Janney, C. G. and Neuschwander- Tetri, B. A. (1994) Nonalcoholic steatohepatitis: an expanded clinical entity.Gastroenterology 107, 1103-1109 https://doi.org/10.1016/0016-5085(94)90235-6
  5. Taghibiglou, C., Carpentier, A., Inderstine, S. C. V., Chen, B., Rudy, D., Aiton, A., Lewis, G. F. and Adeli, K. (2000) Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance. (Evidence for enhanced lipoprotein assembly, reduced intracellular ApoB degradation, and increased microsomal triglyceride transfer protein in a fructose-fed hamster model). J. Biol. Chem. 275, 8416-8425 https://doi.org/10.1074/jbc.275.12.8416
  6. Yang, L. Y., Kuksis, A., Myher, J. J. and Steiner, G. (1996) Contribution of de novo fatty acid synthesis to very low density lipoprotein triacylglycerols: evidence from mass isotopomer distribution analysis of fatty acids synthesized from $[^2H_6]$ethanol. J. Lipid. Res. 37, 262-274
  7. Cho, H. J., Kang, H. C., Ju, Y. C., Lee, H. S., Kim, H. S. and Park, H. J. (2006) Augmentation of $Ca^{2+}$ -induced microsomal triglyceride transfer protein activity by glucose supply enhances hypertriglyceridemia in vivo. Biol. Pharm. Bull. 29, 889-895 https://doi.org/10.1248/bpb.29.889
  8. Cho, H. J., Kang, H. C., Choi, S. A., Ju, Y. C., Lee, H. S. and Park, H. J. (2005) The possible role of $Ca^{2+}$ on the activation of microsomal triglyceride transfer protein in rat hepatocytes. Biol. Pharm. Bull. 28, 1418-1423 https://doi.org/10.1248/bpb.28.1418
  9. Bjornsson, O. G., Sparks, J. D., Sparks, C. E. and Gibbons, G. F. (1994) Regulation of VLDL secretion in primary culture of rat hepatocytes: involvement of cAMP-dependent protein kinases. Eur. J. Clin. Invest. 24, 137-148 https://doi.org/10.1111/j.1365-2362.1994.tb00979.x
  10. Schwarz, U. R., Walter, U. and Eigenthaler, M. (2001) Taming platelets with cyclic nucleotides. Biochem. Pharmacol. 62, 1153-1161 https://doi.org/10.1016/S0006-2952(01)00760-2
  11. Berridge, M. J. (1975) The interaction of cyclic nucleotides and calcium in the control of cellular activity. Adv. Cyclic Nucleotide. Res. 6, 1-98
  12. Kaser-Glanzmann, R., Gerber, E. and Luscher, E. F. (1979) Regulation of the intracellular calcium level in human blood platelets: cyclic adenosine 3',5'-monophosphate dependent phosphorylation of a 22,000 dalton component in isolated $Ca^{2+}$ -accumulating vesicles. Biochim. Biophys. Acta. 558, 344-347 https://doi.org/10.1016/0005-2736(79)90271-2
  13. Hedeskov, C. J. (1980) Mechanism of glucose-induced insulin secretion. Physiol. Rev. 60, 442-509 https://doi.org/10.1152/physrev.1980.60.2.442
  14. Wolheim, C. J. and Sharp, G. W. (1981) Regulation of insulin release by calcium. Physiol. Rev. 61, 914-973 https://doi.org/10.1152/physrev.1981.61.4.914
  15. Suh, P. G., Park, J. I., Manzoli, L., Cocco, L., Peak, J. C., Katan, M., Fukami, K., Kataoka, T., Yun, S. and Ryu, S. H. (2008) Multiple roles of phosphoinositide-specific phospholipase C isozymes. J. Biochem. Mol. Biol. 41, 415- 434 https://doi.org/10.5483/BMBRep.2008.41.6.415
  16. Williamson, J. R. and Monck, J. R. (1989) Hormone effects on cellular $Ca^{2+}$fluxes. Annu. Rev. Physiol. 51. 107-124 https://doi.org/10.1146/annurev.ph.51.030189.000543
  17. Rosenson, R. S. (1999) Hypertriglyceridemia and coronaryheart disease risk. Cardiol. Rev. 7, 342-348 https://doi.org/10.1097/00045415-199911000-00012
  18. Lin, M. C., Gordon, D. and Wetterau, J. R. (1995) Microsomal triglyceride transfer protein (MTP) regulation in HepG2 cells: insulin negatively regulates MTP gene expression. J. Lipid Res. 36, 1073-1081
  19. Jin, U. H., Kang, Y. J., Chang, Y. C. and Kim, C. H. (2008) Secretion of atherogenic risk factor apolipoprotein B-100 is increased by a potential mechanism of JNK/PKC-mediated insulin resistance in liver cells. J. Cell Biochem. 103, 908-919 https://doi.org/10.1002/jcb.21462
  20. Oh, M. K., Park, S. J., Kim, N. H. and Kim, I. S. (2007) Protein kinase C-delta stimulates haptoglobin secretion. J. Biochem. Mol. Biol. 40, 130-134 https://doi.org/10.5483/BMBRep.2007.40.1.130
  21. Kakkar, R., Raju, R. V. and Sharma, R. K. (1999) Calmodulindependent cyclic nucleotide phosphodiesterase (PDE1). Cell. Mol. Life Sci. 55, 1164-1186 https://doi.org/10.1007/s000180050364
  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275
  23. Karnovsky, M. J. (1967) The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J. Cell Biol. 35, 213-236 https://doi.org/10.1083/jcb.35.1.213
  24. Reynolds, E. S. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208-212 https://doi.org/10.1083/jcb.17.1.208
  25. Moore, L. (1980) Inhibition of liver-microsome calcium pump by in vivo administration of CCl4, CHCl3 and 1,1-dichloroethylene (vinylidene chloride). Biochem. Pharmacol. 29, 2505-2511 https://doi.org/10.1016/0006-2952(80)90356-1

Cited by

  1. The calcium-sensing receptor R990G polymorphism is associated with increased risk of hypertriglyceridemia in obese Chinese vol.533, pp.1, 2014, https://doi.org/10.1016/j.gene.2013.09.122
  2. MiR-27a-5p Increases Steer Fat Deposition Partly by Targeting Calcium-sensing Receptor (CASR) vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-20168-9