DOI QR코드

DOI QR Code

Fifty C-terminal amino acid residues are necessary for the chaperone activity of DFF45 but not for the inhibition of DFF40

  • Park, Hyun-Ho (Department of Biochemistry, School of Biotechnology, Yeungnam University)
  • Published : 2009.11.30

Abstract

Apoptotic DNA fragmentation, the hallmark of apoptosis, is mediated primarily by caspase-activated DFF40 (CAD) nuclease. DFF40 exists as a heterodimer with DFF45 (ICAD), which is a specific chaperone and inhibitor of DFF40 under normal conditions. To understand the mechanism through which the DFF40/DFF45 system is regulated, we analyzed the structural and biochemical properties of apoptotic DNA fragmentation mediated by DFF40/DFF45. Using limited proteolysis, we show that residues 1-281 of DFF45 form a rigid, crystallized domain, whereas the loop formed by residues 277-281 is accessible by trypsin. These results show that the C-terminal helix formed by residues 281-300 is dynamic and necessary for the chaperone activity of DFF45, but not for inhibition of DFF40.

Keywords

References

  1. Jacobson, M. D., Weil, M. and Raff, M. C. (1997) Programmed cell death in animal development. Cell 88, 347-354 https://doi.org/10.1016/S0092-8674(00)81873-5
  2. Yang, H., Wang, J., Xu, C., Pan, H. and Zhang, Z. (2006) Maltol inhibits apoptosis of human neuroblastoma cells induced by hydrogen peroxide. J. Biochem. Mol. Biol. 39, 145-149 https://doi.org/10.5483/BMBRep.2006.39.2.145
  3. Kang, H. Y., Shim, D., Kang, S. S., Chang, S. and Kim, H. Y. (2006) Protein kinase B inhibits endostatin-induced apoptosis in HUVECs. J. Biochem. Mol. Biol. 39, 97-104 https://doi.org/10.5483/BMBRep.2006.39.1.097
  4. Park, H. H., Lo, Y. C., Lin, S. C., Wang, L., Yang, J. K. and Wu, H. (2007) The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu. Rev. Immunol. 25, 561-586 https://doi.org/10.1146/annurev.immunol.25.022106.141656
  5. Park, H. H., Logette, E., Raunser, S., Cuenin, S., Walz, T., Tschopp, J. and Wu, H. (2007) Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex. Cell 128, 533-546 https://doi.org/10.1016/j.cell.2007.01.019
  6. Batistatou, A. and Greene, L. A. (1993) Internucleosomal DNA cleavage and neuronal cell survival/death. J. Cell Biol. 122, 523-532 https://doi.org/10.1083/jcb.122.3.523
  7. Liu, X., Zou, H., Slaughter, C. and Wang, X. (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175-184 https://doi.org/10.1016/S0092-8674(00)80197-X
  8. Sakahira, H., Enari, M. and Nagata, S. (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96-99 https://doi.org/10.1038/34214
  9. Sabol, S. L., Li, R., Lee, T. Y. and Abdul-Khalek, R. (1998) Inhibition of apoptosis-associated DNA fragmentation activity in nonapoptotic cells: the role of DNA fragmentation factor-45 (DFF45/ICAD). Biochem. Biophys. Res. Commun. 253, 151-158 https://doi.org/10.1006/bbrc.1998.9770
  10. Liu, X., Li, P., Wildlak, P., Zou, H., Luo, H., Garrard, W. T. and Wang, X. (1999) Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation Factor-45/inhibitor of caspase-activated DNaser inactivation. J. Biol. Chem. 274, 13836-13840 https://doi.org/10.1074/jbc.274.20.13836
  11. Lugovskoy, A. A., Zhou, P., Chou, J. J., McCarty, J. S., Li, P. and Wagner, G. (1999) Solution structure of the CIDE-N domain of CIDE-B and a model for CIDE-N/CIDE-N interactions in the DNA fragmentation pathway of apoptosis. Cell 99, 747-755 https://doi.org/10.1016/S0092-8674(00)81672-4
  12. Zhou, P., Lugovskoy, A. A., McCarty, J. S., Li, P. and Wagner, G. (2001) Solution structure of DFF40 and DFF45 N-terminal domain complex and mutual chaperone activity of DFF40 and DFF45. Proc. Natl. Acad. Sci. U.S.A. 98, 6051-6055 https://doi.org/10.1073/pnas.111145098
  13. McCarty, J. S., Toh, S. Y. and Li, P. (1999) Study of DFF45 in its role of chaperone and inhibitor: two independent inhibitory domains of DFF40 nuclease activity. Biochem. Biophys. Res. Commun. 264, 176-80 https://doi.org/10.1006/bbrc.1999.1497
  14. Sakahira, H., Iwamatsu, A. and Nagata, S. (2000) Specific chaperone-like activity of inhibitor of caspase-activated DNase for caspase-activated DNase. J. Biol. Chem. 275, 8091-8096 https://doi.org/10.1074/jbc.275.11.8091
  15. Wolf, B. B., Schuler, M., Echeverri, F. and Green, D. R. (1999) Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J. Biol. Chem. 274, 30651-30656 https://doi.org/10.1074/jbc.274.43.30651
  16. Gu, J., Dong, R. P., Zhang, C., McLaughlin, D. F., Wu, M. X. and Schlossman, S. F. (1999) Functional interaction of DFF35 and DFF45 with caspase-activated DNA fragmentation nuclease DFF40. J. Biol. Chem. 274, 20759-20762 https://doi.org/10.1074/jbc.274.30.20759
  17. Fukushima, K., Kikuchi, J., Koshiba, S., Kigawa, T., Kuroda, Y. and Yokoyama, S. (2002) Solution structure of the DFF-C domain of DFF45/ICAD. A structural basis for the regulation of apoptotic DNA fragmentation. J. Mol. Biol. 321, 317-327 https://doi.org/10.1016/S0022-2836(02)00588-0
  18. Dzivenu, O. K., Park, H. H. and Wu, H. (2004) General co-expression vectors for the expression of heterodimeric protein complexes in Escherichia coli. Protein Expr. Purif. 38, 1-8 https://doi.org/10.1016/j.pep.2004.07.016
  19. Woo, E., Kim, Y., Kim, M., Han, W., Shin, S., Robinson, H., Park, S. and Oh, B. (2004) Structural mechanism for inactivation and activation of CAD/DFF40 in the apoptotic pathway. Mol. Cell 14, 531-539
  20. Garnier, J., Gibrat, J. and Robson, B. (1996) GOR secondary structure prediction method version IV. Methods in Enzymology 266, 540-553 https://doi.org/10.1016/S0076-6879(96)66034-0
  21. Stennicke H. R. and Salvesen, G. S. (1997) Biochemical characteristics of caspases-3, -6, -7, and -8. J. Biol. Chem. 272, 25719-25723 https://doi.org/10.1074/jbc.272.41.25719
  22. Stennicke H. R. and Salvesen, G. S. (2000) Caspase assays. Methods Enzymol. 322, 91-100 https://doi.org/10.1016/S0076-6879(00)22010-7

Cited by

  1. Identification of ICAD-derived peptides capable of inhibiting caspase-activated DNase vol.279, pp.16, 2012, https://doi.org/10.1111/j.1742-4658.2012.08673.x
  2. Crystallization and preliminary X-ray crystallographic studies of the CIDE-N domain of CIDE-3 vol.69, pp.11, 2013, https://doi.org/10.1107/S1744309113026444
  3. In vitro reconstitution of the interactions in the PIDDosome vol.15, pp.12, 2010, https://doi.org/10.1007/s10495-010-0544-2
  4. In vitro analysis of the complete CIDE domain interactions of the Drep system in fly vol.19, pp.3, 2014, https://doi.org/10.1007/s10495-013-0941-4
  5. Molecular basis for homo-dimerization of the CIDE domain revealed by the crystal structure of the CIDE-N domain of FSP27 vol.439, pp.4, 2013, https://doi.org/10.1016/j.bbrc.2013.09.018
  6. Dual apoptotic DNA fragmentation system in the fly: Drep2 is a novel nuclease of which activity is inhibited by Drep3 vol.586, pp.19, 2012, https://doi.org/10.1016/j.febslet.2012.07.056
  7. Purification, crystallization and preliminary X-ray crystallographic studies of Drep2 CIDE domain vol.70, pp.10, 2014, https://doi.org/10.1107/S2053230X14019165