DOI QR코드

DOI QR Code

PKD2 interacts with Lck and regulates NFAT activity in T cells

  • Li, Qing (Department of Life Science and Biotechnology, Shanghai Jiaotong University) ;
  • Sun, Xiaoqing (Shanghai Genomics, Inc. and Functional Genomics II of the Chinese National Human Genome Center) ;
  • Wu, Jun (Department of Life Science and Biotechnology, Shanghai Jiaotong University) ;
  • Lin, Zhixin (Department of Life Science and Biotechnology, Shanghai Jiaotong University) ;
  • Luo, Ying (Department of Life Science and Biotechnology, Shanghai Jiaotong University)
  • Published : 2009.01.31

Abstract

Protein kinase D2 (PKD2) is a member of the PKD serine/threonine protein kinase family that has been implicated in the regulation of a variety of cellular processes including proliferation, survival, protein trafficking and immune response. In the present study, we report a novel interaction between PKD2 and Lck, a member of the Src tyrosine protein kinase family that is predominantly expressed in T cells. This interaction involved the C-terminal kinase domains of both PKD2 and Lck. Moreover, co-expression of Lck enhanced the tyrosine phosphorylation of PKD2 and increased its kinase activity. Finally, we report that PKD2 enhanced T cell receptor (TCR)-induced nuclear factor of T cell (NFAT) activity in Jurkat T cells. These results suggested that Lck regulated the activity of PKD2 by tyrosine phosphorylation, which in turn may have modulated the physiological functions of PKD2 during TCR-induced T cell activation.

Keywords

References

  1. Weiss, A., and Littman, D.R. (1994) Signal transduction by lymphocyte antigen receptors. Cell 76, 263-274 https://doi.org/10.1016/0092-8674(94)90334-4
  2. Straus, D.B. and Weiss, A. (1992) Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor. Cell 70, 585-593 https://doi.org/10.1016/0092-8674(92)90428-F
  3. Samelson, L.E. and. Klausner, R.D (1992) Tyrosine kinases and tyrosine-based activation motifs. Current research on activation via the T cell antigen receptor. J. Biol. Chem. 267, 24913-24916
  4. Molina, T.J., Kishihara, K., Siderovski, D.P., van Ewijk, W., Narendran, A., Timms, E., Wakeham, A., Paige, C.J., Hartmann, K.U., Veillette, A., et al. (1992) Profound block in thymocyte development in mice lacking p56lck. Nature 357, 161-164 https://doi.org/10.1038/357161a0
  5. Hatakeyama, M., Kono, T., Kobayashi, N., Kawahara, A., Levin, S.D., Perlmutter, R.M. and Taniguchi, T. (1991) Interaction of the IL-2 receptor with the src-family kinase p56lck: identification of novel intermolecular association. Science 252, 1523-1528 https://doi.org/10.1126/science.2047859
  6. Johannes, F.J., Prestle, J., Eis, S., Oberhagemann, P. and Pfizenmaier, K. (1994) PKCu is a novel, atypical member of the protein kinase C family. J. Biol. Chem. 269, 6140-6148
  7. Valverde, A.M., Sinnett-Smith, J., Van Lint, J. and Rozengurt, E. (1994) Molecular cloning and characterization of protein kinase D: a target for diacylglycerol and phorbol esters with a distinctive catalytic domain. Proc. Natl. Acad. Sci. U.S.A. 91, 8572-8576 https://doi.org/10.1073/pnas.91.18.8572
  8. Sturany, S., Van Lint, J., Muller, F., Wilda, M., Hameister, H., Hocker, M., Brey, A., Gern, U., Vandenheede, J., Gress, T., Adler, G. and Seufferlein, T. (2001) Molecular cloning and characterization of the human protein kinase D2. A novel member of the protein kinase D family of serine threonine kinases. In J. Biol. Chem. 276, 3310-3318 https://doi.org/10.1074/jbc.M008719200
  9. Hayashi, A., Seki, N., Hattori, A., Kozuma, S. and Saito, T. (1999) PKCnu, a new member of the protein kinase C family, composes a fourth subfamily with PKCmu. Biochem. Biophys. Acta. 1450, 99-106 https://doi.org/10.1016/S0167-4889(99)00040-3
  10. Rozengurt, E., Rey, O. and Waldron, R.T. (2005) Protein kinase D signaling. J. Biol. Chem. 280, 13205-13208 https://doi.org/10.1074/jbc.R500002200
  11. Iglesias, T. and Rozengurt, E. (1998) Protein kinase D activation by mutations within its pleckstrin homology domain. J. Biol. Chem. 273, 410-416 https://doi.org/10.1074/jbc.273.1.410
  12. Iglesias, T., Matthews, S. and Rozengurt, E. (1998) Dissimilar phorbol ester binding properties of the individual cysteine-rich motifs of protein kinase D. FEBS Lett 437, 19-23 https://doi.org/10.1016/S0014-5793(98)01189-2
  13. Rey, O. and Rozengurt, E. (2001) Protein kinase D interacts with Golgi via its cysteine-rich domain. Biochem. Biophys. Res. Commun. 287, 21-26 https://doi.org/10.1006/bbrc.2001.5530
  14. Waldron, R.T., Iglesias, T. and Rozengurt, E. (1999) The pleckstrin homology domain of protein kinase D interacts preferentially with the eta isoform of protein kinase C. J. Biol. Chem. 274, 9224-9230 https://doi.org/10.1074/jbc.274.14.9224
  15. Matthews, S.A., Iglesias T., Rozengurt, E. and Cantrell, D. (2000) Spatial and temporal regulation of protein kinase D (PKD). EMBO J. 19, 2935-2945 https://doi.org/10.1093/emboj/19.12.2935
  16. Yeaman, C., Ayala, M.I., Wright, J.R., Bard, F., Bossard, C., Ang, A., Maeda, Y., Seufferlein, T., Mellman, I., Nelson, W.J. and Malhotra, V. (2004) Protein kinase D regulates basolateral membrane protein exit from trans- Golgi network. Nat. Cell Biol. 6, 106-112 https://doi.org/10.1038/ncb1090
  17. Hausser, A., Storz, P., Martens, S., Link, G., Toker, A. and Pfizenmaier, K. (2005) Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol- 4 kinase IIIbeta at the Golgi complex. Nat. Cell Biol. 7, 880-886 https://doi.org/10.1038/ncb1289
  18. Jamora, C., Yamanouye N., Van Lint J., Laudenslager J., Vandenheede J.R., Faulkner, D.J. and Malhotra. V. (1999) Gbetagamma-mediated regulation of Golgi organization is through the direct activation of protein kinase D. Cell 98, 59-68 https://doi.org/10.1016/S0092-8674(00)80606-6
  19. Yuan, J., Bae, D., Cantrell, D., Nel, A.E. and Rozengurt, E. (2002) Protein kinase D is a downstream target of protein kinase Ctheta. Biochem. Biophys. Res. Commun. 291, 444-452 https://doi.org/10.1006/bbrc.2002.6469
  20. Storz, P. and Toker, A. (2003) Protein kinase D mediates a stress-induced NF-kappaB activation and survival pathway. EMBO J. 22, 109-120 https://doi.org/10.1093/emboj/cdg009
  21. Sidorenko, S.P., Law, C.L., Klaus, S.J., Chandran, K.A., Takata, M., Kurosaki, T. and Clark, E.A. (1996) Protein kinase C mu (PKC mu) associates with the B cell antigen receptor complex and regulates lymphocyte signaling. Immunity 5, 353-363 https://doi.org/10.1016/S1074-7613(00)80261-7
  22. Matthews, S.A., Dayalu, R., Thompson, L.J. and Scharenberg, A.M. (2003) Regulation of protein kinase Cnu by the B-cell antigen receptor. J. Biol. Chem. 278, 9086-9091 https://doi.org/10.1074/jbc.M211295200
  23. Matthews, S.A., Rozengurt, E. and Cantrell, D. (2000) Protein kinase D. A selective target for antigen receptors and a downstream target for protein kinase C in lymphocytes. J. Exp. Med. 191, 2075-2082 https://doi.org/10.1084/jem.191.12.2075
  24. Oh, M.K., Park, S.J., Kim, N.H. and Kim, I.S. (2007) Protein kinase C-delta stimulates haptoglobin secretion. J. Biochem. Mol. Biol. 40, 130-134 https://doi.org/10.5483/BMBRep.2007.40.1.130
  25. Sturany, S., Van, Lint J., Gilchrist, A., Vandenheede, J.R., Adler, G. and Seufferlein, T. (2002) Mechanism of activation of protein kinase D2(PKD2) by the CCK(B)/gastrin receptor. J. Biol. Chem. 277, 29431-29436 https://doi.org/10.1074/jbc.M200934200
  26. Irie, A., Harada, K., Tsukamoto, H., Kim, J.R., Araki, N. and Nishimura, Y. (2006) Protein kinase D2 contributes to either IL-2 promoter regulation or induction of cell death upon TCR stimulation depending on its activity in Jurkat cells. Int. Immunol. 18, 1737-1747 https://doi.org/10.1093/intimm/dxl108
  27. Storz, P., Doppler, H., Johannes, F.J. and Toker, A. (2003) Tyrosine phosphorylation of protein kinase D in the pleckstrin homology domain leads to activation. J. Biol. Chem. 278, 17969-17976 https://doi.org/10.1074/jbc.M213224200
  28. Mihailovic, T., Marx, M., Auer, A., Van Lint, J., Schmid, M., Weber, C. and Seufferlein, T. (2004) Protein kinase D2 mediates activation of nuclear factor kappaB by Bcr-Abl in Bcr-Abl+ human myeloid leukemia cells. Cancer Res. 64, 8939-8944 https://doi.org/10.1158/0008-5472.CAN-04-0981
  29. Rao, A. (1994) NF-ATp: a transcription factor required for the co-ordinate induction of several cytokine genes. Immunol. Today 15, 274-281 https://doi.org/10.1016/0167-5699(94)90007-8
  30. Van Lint, J., Rykx, A., Maeda, Y., Vantus, T., Sturany, S., Malhotra, V., Vandenheede, J.R. and Seufferlein, T. (2002) Protein kinase D: an intracellular traffic regulator on the move. Trends Cell Biol. 12, 193-200 https://doi.org/10.1016/S0962-8924(02)02262-6
  31. Von Blume, J., Knippschild, U., Dequiedt, F., Giamas, G., Beck, A., Auer, A., Van Lint, J., Adler, G. and Seufferlein, T. (2007) Phosphorylation at Ser244 by CK1 determines nuclear localization and substrate targeting of PKD2. EMBO J. 26, 4619-4633 https://doi.org/10.1038/sj.emboj.7601891
  32. Shu, F., Lv, S., Qin, Y., Ma, X., Wang, X., Peng, X., Luo, Y., Xu, B.E., Sun, X. and Wu, J. (2007) Functional characterization of human PFTK1 as a cyclin-dependent kinase. Proc. Natl. Acad. Sci. U.S.A. 104, 9248-9253 https://doi.org/10.1073/pnas.0703327104

Cited by

  1. Kinome Analysis of Receptor-Induced Phosphorylation in Human Natural Killer Cells vol.7, pp.1, 2012, https://doi.org/10.1371/journal.pone.0029672