DOI QR코드

DOI QR Code

Non-specific in vivo inhibition of CK1 by the pyridinyl imidazole p38 inhibitors SB 203580 and SB 202190

  • Shanware, Naval P. (Molecular and Cellular Pharmacology Program, Department of Pharmacology, The University of Wisconsin-Madison Medical School) ;
  • Williams, Leah M. (Molecular and Cellular Pharmacology Program, Department of Pharmacology, The University of Wisconsin-Madison Medical School) ;
  • Bowler, Michael J. (Molecular and Cellular Pharmacology Program, Department of Pharmacology, The University of Wisconsin-Madison Medical School) ;
  • Tibbetts, Randal S. (Molecular and Cellular Pharmacology Program, Department of Pharmacology, The University of Wisconsin-Madison Medical School)
  • Published : 2009.03.31

Abstract

Small-molecule inhibitors of protein kinases have contributed immensely to our understanding of biological signaling path-ways and have been exploited therapeutically for the treatment of cancers and other disease states. The pyridinyl imidazole compounds SB 203580 and SB 202190 were identified as ATP competitive antagonists of the p38 stress-activated protein kinases and have been widely used to elucidate p38-dependent cellular processes. Here, we identify SB 203580 and SB 202190 as potent inhibitors of stress-induced CREB phosphorylation on Serine 111 (Ser-111) in intact cells. Unexpectedly, we found that the inhibitory activity of SB 203580 and SB 202190 on CREB phosphorylation was independent of p38, but instead correlated with inhibition of casein kinase 1 (CK1) in vitro. The inhibition of CK1-mediated CREB phosphorylation by concentrations of pyridinyl imidazoles commonly employed to suppress p38, suggests that in some cases conclusions of p38-dependence derived solely from the use of these inhibitors may be invalid.

Keywords

References

  1. Lee, J. C., Laydon, J. T., McDonnell, P. C., Gallagher, T. F., Kumar, S., Green, D., McNulty, D., Blumenthal, M. J., Heys, J. R., Landvatter, S. W. and et al. (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372, 739-746 https://doi.org/10.1038/372739a0
  2. Cuenda, A., Rouse, J., Doza, Y. N., Meier, R., Cohen, P., Gallagher, T. F., Young, P. R. and Lee, J. C. (1995) SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS lett. 364, 229-233 https://doi.org/10.1016/0014-5793(95)00357-F
  3. Cuenda, A. and Rousseau, S. (2007) p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta. 1773, 1358-1375 https://doi.org/10.1016/j.bbamcr.2007.03.010
  4. Mittelstadt, P. R., Salvador, J. M., Fornace, A. J., Jr. and Ashwell, J. D. (2005) Activating p38 MAPK: new tricks for an old kinase. Cell Cycle 4, 1189-1192 https://doi.org/10.4161/cc.4.9.2043
  5. Young, P. R., McLaughlin, M. M., Kumar, S., Kassis, S., Doyle, M. L., McNulty, D., Gallagher, T. F., Fisher, S., McDonnell, P. C., Carr, S. A., Huddleston, M. J., Seibel, G., Porter, T. G., Livi, G. P., Adams, J. L. and Lee, J. C. (1997) Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase bind in the ATP site. J. Biol. Chem. 272, 12116-12121 https://doi.org/10.1074/jbc.272.18.12116
  6. Johnson, G. L. and Nakamura, K. (2007) The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochim. Biophys. Acta. 1773, 1341-1348 https://doi.org/10.1016/j.bbamcr.2006.12.009
  7. Barone, F. C., Irving, E. A., Ray, A. M., Lee, J. C., Kassis, S., Kumar, S., Badger, A. M., White, R. F., McVey, M. J., Legos, J. J., Erhardt, J. A., Nelson, A. H., Ohlstein, E. H., Hunter, A. J., Ward, K., Smith, B. R., Adams, J. L. and Parsons, A. A. (2001) SB 239063, a second-generation p38 mitogen-activated protein kinase inhibitor, reduces brain injury and neurological deficits in cerebral focal ischemia. J. Pharmacol. Exp. Ther. 296, 312-321
  8. Ward, K. W., Proksch, J. W., Gorycki, P. D., Yu, C. P., Ho, M. Y., Bush, B. D., Levy, M. A. and Smith, B. R. (2002) SB-242235, a selective inhibitor of p38 mitogen-activated protein kinase. II: in vitro and in vivo metabolism studies and pharmacokinetic extrapolation to man. Xenobiotica 32, 235-250 https://doi.org/10.1080/00498250110100711
  9. Knippschild, U., Gocht, A., Wolff, S., Huber, N., Lohler, J. and Stoter, M. (2005) The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal. 17, 675-689 https://doi.org/10.1016/j.cellsig.2004.12.011
  10. Meggio, F. and Pinna, L. A. (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J. 17, 349-368 https://doi.org/10.1096/fj.02-0473rev
  11. Loizou, J. I., El-Khamisy, S. F., Zlatanou, A., Moore, D. J., Chan, D. W., Qin, J., Sarno, S., Meggio, F., Pinna, L. A. and Caldecott, K. W. (2004) The protein kinase CK2 facilitates repair of chromosomal DNA single-strand breaks. Cell 117, 17-28 https://doi.org/10.1016/S0092-8674(04)00206-5
  12. Shi, Y., Venkataraman, S. L., Dodson, G. E., Mabb, A. M., LeBlanc, S. and Tibbetts, R. S. (2004) Direct regulation of CREB transcriptional activity by ATM in response to genotoxic stress. Proc. Natl. Acad. Sci. U.S.A. 101, 5898-5903 https://doi.org/10.1073/pnas.0307718101
  13. Shanware, N. P., Trinh, A. T., Williams, L. M. and Tibbetts, R. S. (2007) Coregulated ataxia telangiectasia-mutated and casein kinase sites modulate cAMP-response element-binding protein-coactivator interactions in response to DNA damage. J. Biol. Chem. 282, 6283-6291 https://doi.org/10.1074/jbc.M610674200
  14. Stokoe, D., Caudwell, B., Cohen, P. T. and Cohen, P. (1993) The substrate specificity and structure of mitogen-activated protein (MAP) kinase-activated protein kinase-2. Biochem. J. 296, 843-849
  15. Kato, T., Jr., Delhase, M., Hoffmann, A. and Karin, M. (2003) CK2 Is a C-Terminal IkappaB Kinase Responsible for NF-kappaB Activation during the UV Response. Mol. Cell 12, 829-839 https://doi.org/10.1016/S1097-2765(03)00358-7
  16. Sayed, M., Kim, S. O., Salh, B. S., Issinger, O. G. and Pelech, S. L. (2000) Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase. J. Biol. Chem. 275, 16569- 16573 https://doi.org/10.1074/jbc.M000312200
  17. He, Z., Cho, Y. Y., Liu, G., Ma, W. Y., Bode, A. M. and Dong, Z. (2003) p38 Mitogen-activated protein kinase regulation of JB6 Cl41 cell transformation promoted by epidermal growth factor. J. Biol. Chem. 278, 26435-26442 https://doi.org/10.1074/jbc.M303859200
  18. Liu, G., Zhang, Y., Bode, A. M., Ma, W. Y. and Dong, Z. (2002) Phosphorylation of 4E-BP1 is mediated by the p38/MSK1 pathway in response to UVB irradiation. J. Biol. Chem. 277, 8810-8816 https://doi.org/10.1074/jbc.M110477200
  19. Blencke, S., Gutbrod, H., Salassidis, K., Stein-Gerlach, M., Missio, A., Cotten, M. and Daub, H. (2003) An efficient proteomics method to identify the cellular targets of protein kinase inhibitors. Proc. Natl. Acad. Sci. U.S.A. 100, 15434-15439 https://doi.org/10.1073/pnas.2535024100
  20. Bain, J., Plater, L., Elliott, M., Shpiro, N., Hastie, C. J., McLauchlan, H., Klevernic, I., Arthur, J. S., Alessi, D. R. and Cohen, P. (2007) The selectivity of protein kinase inhibitors: a further update. Biochem. J. 408, 297-315 https://doi.org/10.1042/BJ20070797
  21. Lee, M. R. and Dominguez, C. (2005) MAP kinase p38 inhibitors: clinical results and an intimate look at their interactions with p38alpha protein. Curr. Med. Chem. 12, 2979-2994 https://doi.org/10.2174/092986705774462914
  22. Shi, Y., Dodson, G. E., Mukhopadhyay, P. S., Shanware, N. P., Trinh, A. T. and Tibbetts, R. S. (2007) Identification of carboxyl-terminal MCM3 phosphorylation sites using polyreactive phosphospecific antibodies. J. Biol. Chem. 282, 9236-9243 https://doi.org/10.1074/jbc.M609256200

Cited by

  1. The CK1 Family: Contribution to Cellular Stress Response and Its Role in Carcinogenesis vol.4, 2014, https://doi.org/10.3389/fonc.2014.00096
  2. Cardiomyocyte differentiation of pluripotent stem cells with SB203580 analogues correlates with Wnt pathway CK1 inhibition independent of p38 MAPK signaling vol.80, 2015, https://doi.org/10.1016/j.yjmcc.2014.12.003
  3. Conserved and Distinct Modes of CREB/ATF Transcription Factor Regulation by PP2A/B56γ and Genotoxic Stress vol.5, pp.8, 2010, https://doi.org/10.1371/journal.pone.0012173
  4. Inhibition of Melanogenesis by the Pyridinyl Imidazole Class of Compounds: Possible Involvement of the Wnt/β-Catenin Signaling Pathway vol.7, pp.3, 2012, https://doi.org/10.1371/journal.pone.0033021
  5. SB203580 increases G-CSF production via a stem-loop destabilizing element in the 3’ untranslated region in macrophages independently of its effect on p38 MAPK activity vol.23, pp.1, 2016, https://doi.org/10.1186/s12929-016-0221-z
  6. Target Engagement Analysis and Link to Pharmacodynamic Endpoint for a Novel Class of CNS-penetrant and Efficacious p38α MAPK Inhibitors vol.9, pp.4, 2014, https://doi.org/10.1007/s11481-014-9543-3
  7. Target molecules of food phytochemicals: Food science bound for the next dimension vol.3, pp.5, 2012, https://doi.org/10.1039/c2fo10274a
  8. Role of peroxiredoxin2 downregulation in recurrent miscarriage through regulation of trophoblast proliferation and apoptosis vol.8, pp.6, 2017, https://doi.org/10.1038/cddis.2017.301
  9. Pyridinyl imidazole compounds interfere with melanosomes sorting through the inhibition of Cyclin G-associated Kinase, a regulator of cathepsins maturation vol.26, pp.4, 2014, https://doi.org/10.1016/j.cellsig.2013.12.023
  10. Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model vol.11, pp.2, 2016, https://doi.org/10.1371/journal.pone.0148574
  11. -receptor-mediated adenoprotection involves phospholipase C, PKC-ε, and p38 MAPK, but not HSP27 vol.298, pp.6, 2010, https://doi.org/10.1152/ajpheart.01028.2009
  12. 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses vol.215, pp.4, 2018, https://doi.org/10.1084/jem.20171068
  13. Casein kinase 1α: biological mechanisms and theranostic potential vol.16, pp.1, 2018, https://doi.org/10.1186/s12964-018-0236-z