DOI QR코드

DOI QR Code

Next-generation gene targeting in the mouse for functional genomics

  • Gondo, Yoichi (Mutagenesis and Genomics Team, RIKEN BioResource Center) ;
  • Fukumura, Ryutaro (Mutagenesis and Genomics Team, RIKEN BioResource Center) ;
  • Murata, Takuya (Mutagenesis and Genomics Team, RIKEN BioResource Center) ;
  • Makino, Shigeru (Mutagenesis and Genomics Team, RIKEN BioResource Center)
  • Published : 2009.06.30

Abstract

In order to elucidate ultimate biological function of the genome, the model animal system carrying mutations is indispensable. Recently, large-scale mutagenesis projects have been launched in various species. Especially, the mouse is considered to be an ideal model to human because it is a mammalian species accompanied with well-established genetic as well as embryonic technologies. In 1990', large-scale mouse mutagenesis projects firstly initiated with a potent chemical mutagen, N-ethyl-N-nitrosourea (ENU) by the phenotype-driven approach or forward genetics. The knockout mouse mutagenesis projects with trapping/conditional mutagenesis have then followed as Phase II since 2006 by the gene-driven approach or reverse genetics. Recently, the next-generation gene targeting system has also become available to the research community, which allows us to establish and analyze mutant mice carrying an allelic series of base substitutions in target genes as another reverse genetics. Overall trends in the large-scale mouse mutagenesis will be reviewed in this article particularly focusing on the new advancement of the next-generation gene targeting system. The drastic expansion of the mutant mouse resources altogether will enhance the systematic understanding of the life. The construction of the mutant mouse resources developed by the forward and reverse genetic mutagenesis is just the beginning of the annotation of mammalian genome. They provide basic infrastructure to understand the molecular mechanism of the gene and genome and will contribute to not only basic researches but also applied sciences such as human disease modelling, genomic medicine and personalized medicine.

Keywords

References

  1. Fearon, E. R. (1991) A genetic basis for the multi-step pathway of colorectal tumorigenesis. Princess Takamatsu Symp. 22, 37-48
  2. Wu, X. and Pandolfi, P. P. (2001) Mouse models for mutistep tumorigenesis. Trends Cell Biol. 11, S2-9 https://doi.org/10.1016/S0962-8924(01)02127-4
  3. Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A. Jr., Butel, J. S. and Bradley, A. (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215-221 https://doi.org/10.1038/356215a0
  4. Gondo, Y., Nakamura, K., Nakao, K., Sasaoka, T., Ito, K., Kimura, M. and Katsuki, M. (1994) Gene replacement of the p53 gene with the lacZ gene in mouse embryonic stem cells and mice by using two steps of homologous recombination. Biochem. Biophys. Res. Commun. 202, 830-837 https://doi.org/10.1006/bbrc.1994.2005
  5. Toleco, F. and Wahl, G. M. (2006) Regulating the p53 pathway: in vitro hypothesis, in vivo veritas. Nat. Rev. Cancer. 6. 909-923 https://doi.org/10.1038/nrc2012
  6. Little, C. C. and Bagg, H. J. (1923) The occurrence of two heritable types of abnormality among the descendants of X-rayed mice. Amer. J. Roentgenol. Radiat. Therap. 10, 975-989
  7. Muller, H. J. (1927) Artificial transmutation of the gene. Science 66, 84-87 https://doi.org/10.1126/science.66.1699.84
  8. Monaco, A. P., Bertelson, C. J., Middlesworth, W., Colletti, C. A., Aldridge, J., Fischbeck, K. H., Bartlett, R., Pericak-Vance, M. A., Roses, A. D. and Kunkel, L. M. (1985) Detection of deletions spanning the Duchenne muscular dystrophy locus using a tightly linked DNA segment. Nature 316, 842-845 https://doi.org/10.1038/316842a0
  9. Friend, S. H., Bernards, R., Rogelj, S., Weinberg, R. A., Rapaport, J. M., Albert, D. M. and Dryja, T. P. (1986) A human DNA segment with properties of the gene that predisiposes to retinoblastoma and osteosarcoma. Nature 323, 643-646 https://doi.org/10.1038/323643a0
  10. The Hungtington's Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosome. Cell 72, 971-983 https://doi.org/10.1016/0092-8674(93)90585-E
  11. Thomas, K. R., Folger, K. R. and Capecchi, M. R. (1986) High frequency targeting of genes to specific sites in the mammalian genome. Cell 44, 419-428 https://doi.org/10.1016/0092-8674(86)90463-0
  12. Doetschman, T., Maeda, N. and Smithies, O. (1988) Targeted mutation of the Hprt gene in mouse embryonic stem cells. Proc. Natl. Acad. Sci. U.S.A. 85, 8583-8587 https://doi.org/10.1073/pnas.85.22.8583
  13. Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156 https://doi.org/10.1038/292154a0
  14. Robertson, E., Bradley, A., Kuehn, M. and Evans, M. (1986) Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323, 445-448 https://doi.org/10.1038/323445a0
  15. Watson, J. D. (1990) The Human Genome Project: past, present and future. Science 248, 44-49 https://doi.org/10.1126/science.2181665
  16. Canter, C. R. (1990) Orchestrating the human genome project. Science 248, 49-51 https://doi.org/10.1126/science.2181666
  17. Hrabe de Angelis, M. and Balling, R. (1998) Large scale ENU screens in the mouse: genetics meets genomics. Mutat. Res. 400, 25-32 https://doi.org/10.1016/S0027-5107(98)00061-X
  18. Hrabe de Angelis M. H., Flaswinkel, H., Fuchs, H., Rathkolb, B., Soewarto, D., Marschall, S., Heffner, S., Pargent, W., Wuensch, K., Jung, M., Reis, A., Richter, T., Alessandrini, F., Jakob, T., Fuchs, E., Kolbm, H., Kremmer, E., Schaeble, K., Rollinski, B., Roscher, A., Peters, C., Meitinger, T., Strom, T., Steckler, T., Holsboer, F., Klopstock, T., Gekeler, F., Schindewolf, C., Jung, T., Avraham, K., Behrendt, H., Ring, J., Zimmer, A., Schughart, K., Pfeffer, K., Wolf, E. and Balling, R. (2000) Genome-wide, large scale production of mutant mice by ENU mutagenesis. Nature Genetics 25, 444-447 https://doi.org/10.1038/78146
  19. Brown, S. D. M. and Nolan, P. M. (1998) Mouse mutagenesis-systematic studies of mammalian gene function. Human Molec. Genet. 7, 1627-1633 https://doi.org/10.1093/hmg/7.10.1627
  20. Nolan, P. M., Peters, J., Strivens, M., Rogers, D., Hagan, J., Spurr, N., Gray, I. C., Vizor, L., Brooker, D., Whitehill, E., Washbourne, R., Hough, T., Greenaway, S., Hewitt, M., Liu, X., McCormack, S., Pickford, K., Selley, R., Wells, C., Tymowska-Lalanne, Z., Roby, P., Glenister, P., Thornton, C., Thaung, C., Stevenson, J. A., Arkell, R., Mburu, P., Hardisty, R., Kiernan, A., Erven, A., Steel, K. P., Voegeling, S., Guenet, J. L., Nickols, C., Sadri, R., Nasse, M., Isaacs, A., Davies, K., Browne, M., Fisher, E. M., Martin, J., Rastan, S., Brown, S. D. and Hunter, J. (2000) A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nature Genetics 25, 440-443 https://doi.org/10.1038/78140
  21. Russell, W. L., Kelly, E. M., Hunsicker, P. R., Bangham, J. W., Maddux, S. C. and Phipps, E. L. (1979) Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc. Natl. Acad. Sci. U.S.A. 76, 5818-5819 https://doi.org/10.1073/pnas.76.11.5818
  22. Russell, W. L., Hunsicker, P. R., Raymer, G. D., Steele, M. H., Stelzner, K. F. and Thompson, H. M. (1982) Dose-response curve for ethylnitrosourea-induced specific-locus mutations in mouse spermatogonia. Proc. Natl. Acad. Sci. U.S.A. 79, 3589-3591 https://doi.org/10.1073/pnas.79.11.3589
  23. Russell, W. L., Hunsicker, P. R., Carpenter, D. A., Cornett, C. V. and Guinn, G. M. (1982) Effect of dose fractionation on the ethylnitrosourea induction of specific-locus mutations in mouse spermatogonia. Proc. Natl. Acad. Sci. U.S.A. 79, 3592-3593 https://doi.org/10.1073/pnas.79.11.3592
  24. Hitotsumachi, S., Carpenter, D. A. and Russell, W. L. (1985) Dose-repetition increases the mutagenic effectiveness of N-ethyl-N-nitrosourea in mouse spermatogonia. Proc. Natl. Acad. Sci. U.S.A. 82, 6619-6621 https://doi.org/10.1073/pnas.82.19.6619
  25. Justice, M. J., Noveroske, J. K., Weber, J. S., Zheng, B. and Bradley, A. (1999) Mouse ENU mutagenesis. Human Mol. Genet. 8, 1955-1963 https://doi.org/10.1093/hmg/8.10.1955
  26. Noveroske, J. K., Weber, J. S. and Justice, M. J. (2000) The mutagenic action of N-ethyl-N-nitrosourea in the mouse. Mamm. Genome 11, 478-483 https://doi.org/10.1007/s003350010093
  27. Gondo, Y. (2008) Trends in large-scale mouse mutagenesis: from genetics to functional genomics. Nature Reviews Genetics 9: 803-810 https://doi.org/10.1038/nrg2431
  28. Beckers, J., Wurst, W. and Hrabe de Angelis, M. (2009) Towards better mouse models: enhanced genotypes, systemic phenotyping and envirotype modeling. Nature Reviews Genetics 10, 371-380 https://doi.org/10.1038/nrg2578
  29. Austin, C. P., Battey, J. F., Bradley, A., Bucan, M., Capecchi, M., Collins, F. S., Dove, W. F., Duyk, G., Dymecki, S., Eppig, J. T., Grieder, F. B., Heintz, N., Hicks, G., Insel, T. R., Joyner, A., Koller, B. H., Lloyd, K. C., Magnuson, T., Moore, M. W., Nagy, A., Pollock, J. D., Roses, A. D., Sands, A. T., Seed, B., Skarnes, W. C., Snoddy, J., Soriano, P., Stewart, D. J., Stewart, F., Stillman, B., Varmus, H., Varticovski, L., Verma, I. M., Vogt, T. F., von Melchner, H., Witkowski, J., Woychik, R. P., Wurst, W., Yancopoulos, G. D., Young, S. G. and Zambrowicz, B. (2004) The knockout mouse project. Nat. Genet. 36, 921-924 https://doi.org/10.1038/ng0904-921
  30. Auwerx, J., Avner, P., Baldock, R., Ballabio, A., Balling, R., Barbacid, M., Berns, A., Bradley, A., Brown, S., Carmeliet, P., Chambon, P., Cox, R., Davidson, D., Davies, K., Duboule, D., Forejt, J., Granucci, F., Hastie, N., de Angelis, M. H., Jackson, I., Kioussis, D., Kollias, G., Lathrop, M., Lendahl, U., Malumbres, M., von Melchner, H., Muller, W., Partanen, J., Ricciardi-Castagnoli, P., Rigby, P., Rosen, B., Rosenthal, N., Skarnes, B., Stewart, A. F., Thornton, J., Tocchini-Valentini, G., Wagner, E., Wahli, W. and Wurst, W. (2004) The European dimension for the mouse genome mutagenesis program. Nat. Genet. 36, 925-927 https://doi.org/10.1038/ng0904-925
  31. International Mouse Knockout Consortium. (2007) A mouse for all reasons. Cell 128, 9-13 https://doi.org/10.1016/j.cell.2006.12.018
  32. Editorial. (2007) Mutant mice galore. Nature 446, 469-470 https://doi.org/10.1038/446469b
  33. Panel Discussion. (2005) In the 19th International Mammalian Genome Conference (IMGC), Strasbourg, France
  34. Whittingham, D. G., Leibo, S. P. and Mazur, P. (1972) Survival of mouse embryos frozen to -196$^{\circ}$. and -269$^{\circ}C$. Science 178, 411-414 https://doi.org/10.1126/science.178.4059.411
  35. Nakagata, N. (1993) Production of normal young following transfer of mouse embryos obtained by in vitro fertilization between cryopreserved gametes. J. Reprod. Fertil. 99, 77-80 https://doi.org/10.1530/jrf.0.0990077
  36. Nakagata, N. (2000) Cryopreservation of mouse spermatozoa. Mamm. Genome 11, 572-576 https://doi.org/10.1007/s003350010109
  37. Askew, G. R., Doetschman, T. and Lingrel, J. B. (1993) Site-directed point mutations in embryonic stem cells: a gene-targeting tag-and-exchange strategy. Mol. Cell Biol. 13, 4115-4124 https://doi.org/10.1128/MCB.13.7.4115
  38. Stacey, A., Schnieke, A., McWhir, J., Cooper, J., Colman, A. and Melton, D. W. (1994) Use of double-replacement gene targeting to replace the murine alpha-lactalbumin gene with its human counterpart in embryonic stem cells and mice. Mol. Cell Biol. 14, 1009-1016 https://doi.org/10.1128/MCB.14.2.1009
  39. Wu, H., Liu, X. and Jaenisch, R. (1994) Double replacement: strategy for efficient introduction of subtle mutations into the murine Col1a-1 gene by homologous recombination in embryonic stem cells. Proc. Natl. Acad. Sci. USA 91, 2819-2823 https://doi.org/10.1073/pnas.91.7.2819
  40. Gondo, Y., Nakamura, K., Nakao, K., Sasaoka, T., Ito, K., Kimura, M. and Katsuki, M. (1994) Gene replacement of the p53 gene with the lacZ gene in mouse embryonic stem cells and mice by using two steps of homologous recombination. Biochem. Biophys. Res. Commun. 202, 830-837 https://doi.org/10.1006/bbrc.1994.2005
  41. Gross, E., Arnold, N., Goette, J., Schwarz-Boeger, U. and Kiechle, M. (1999) A comparison of BRCA1 mutation analysis by direct sequencing, SSCP and DHPLC. Hum. Genet. 105, 72-78 https://doi.org/10.1007/s004390051066
  42. Xiao, W. and Oefner, P. J. (2001) Denaturing high-performance liquid chromatography: a review. Hum. Mutat. 17, 439-474 https://doi.org/10.1002/humu.1130
  43. Gao, Q. and Yeung, E. S. (2000) High-throughput detection of unknown mutations by using multiplexed capillary electrophoresis with poly (vinylpyrrolidone) solution. Anal. Chem. 72, 2499-2506 https://doi.org/10.1021/ac991362w
  44. Li, Q., Liu, Z., Monroe, H. and Culiat, C. T. (2002) Integrated platform for detection of DNA sequence variants using capillary array electrophoresis. Electrophoresis 23, 1499-1511 https://doi.org/10.1002/1522-2683(200205)23:10<1499::AID-ELPS1499>3.0.CO;2-X
  45. Murphy, K., Hafez, M., Philips, J., Yarnell, K. Gutshall, K. and Berg, K. (2003) Evaluation of temperature gradient capillary electrophoresis for detection of the factor v leiden mutation: coincident identification of a novel polymorphism in factor v. Mol. Diagn. 7, 35-40 https://doi.org/10.2165/00066982-200307010-00006
  46. Oleykowski C. A., Bronson Mullins, C. R., Godwin, A. K. and Yeung, A. T. (1998) Mutation detection using a novel plant endonuclease. Nucleic. Acids Res. 26, 4597-4602 https://doi.org/10.1093/nar/26.20.4597
  47. Till, B. J. , Reynolds, S. H., Greene, E. A., Codomo, C. A., Enns, L. C., Johnson, J. E., Burtner, C., Odden, A. R., Young, K., Taylor, N. E., Henikoff, J. G., Comai, L. and Henikoff, S. (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res. 13, 524-530 https://doi.org/10.1101/gr.977903
  48. Wittwer, C. T., Reed, G. H., Gundry, C. N., Vandersteen, J. G. and Pryor, R. J. (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin. Chem. 49, 853-860 https://doi.org/10.1373/49.6.853
  49. Bennett, C. D., Campbell, M. N., Cook, C. J., Eyre, D. J., Nay, L. M., Nielsen, D. R., Rasmussen, R. P. and Bernard, P. S. (2003) The LightTyper: high-throughput genotyping using fluorescent melting curve analysis. Biotechniques 34, 1288-1295
  50. Beier, D. R. (2000) Sequence-based analysis of mutagenized mice. Mamm. Genome 11, 594-597 https://doi.org/10.1007/s003350010113
  51. Gondo, Y., Minowa, O., Sezutsu, H., Sakuraba, Y., Toki, H., Wakana, S., Noda, T. and Shiroishi, T. (2001) ENU mouse mutagenesis project in RIKEN GSC: archives for versatile screens, The 15th International Mouse Genome Conference, Edinburgh, UK
  52. Coghill, E. L., Hugill, A., Parkinson, N., Davison, C., Glenister, P., Clements, S., Hunter, J., Cox, R. D. and Brown, S. D. (2002) A gene-driven approach to the identification of ENU mutants in the mouse. Nat. Genet. 30, 255-256 https://doi.org/10.1038/ng847
  53. Gondo, Y., Wakana, S., Noda, T. and Shiroishi, T. (2002) Approaches for the gene indentification: gene-driven mutagenesis and recessive mutations, Workshop on ENU Mutagenesis: Planning for Saturation. pp.25 Chantilly, USA
  54. Concepcion, D., Seburn, K. L., Wen, G., Frankel, W. N. and Hamilton, B. A. (2004) Mutation rate and predicted phenotypic target sizes in ethylnitrosourea-treated mice. Genetics 168, 953-959 https://doi.org/10.1534/genetics.104.029843
  55. Quwailid, M. M., Hugill, A., Dear, N., Vizor, L., Wells, S., Horner, E., Fuller, S., Weedon, J., McMath, H., Woodman, P., Edwards, D. Campbell, D., Rodger, S., Carey, J., Roberts, A., Glenister, P., Lalanne, Z., Parkinson, N., Coghill, E. L., McKeone, R., Cox, S., Willan, J., Greenfield, A., Keays, D., Brady, S., Spurr, N., Gray, I., Hunter, J., Brown, S. D. and Cox, R. D. (2004) A gene-driven ENU-based approach togenerating an allelic series in any gene. Mamm. Genome 15, 585-591 https://doi.org/10.1007/s00335-004-2379-z
  56. Augustin, M., Sedlmeier, R., Peters, T., Huffstadt, U., Kochmann, E., Simon, D., Schoniger, M., Garke-Mayerthaler, S., Laufs, J., Mayhaus, M., Franke, S., Klose, M., Graupner, A., Kurzmann, M., Zinser, C., Wolf, A., Voelkel, M., Kellner, M., Kilian, M., Seelig, S., Koppius, A., Teubner, A., Korthaus, D., Nehls, M. and Wattler, S. (2004) Efficient and fast targeted production of murine models based on ENU mutagenesis. Mamm. Genome 16, 405-413 https://doi.org/10.1007/s00335-004-3028-2
  57. Sakuraba, Y., Sezutsu, H., Takahasi, K. R., Tsuchihashi, K., Ichikawa, R., Fujimoto, N., Kaneko, S., Nakai, Y., Uchiyama, M., Goda, N., Motoi, R., Ikeda, A., Karashima, Y., Inoue, M., Kaneda, H., Masuya, H., Minowa, O., Noguchi, H., Toyoda, A., Sakaki, Y., Wakana, S., Noda, T., Shiroishi, T. and Gondo Y. (2005) Molecular characterization of ENU mouse mutagenesis and archives. Biochem. Biophys. Res. Commun. 336, 609-616 https://doi.org/10.1016/j.bbrc.2005.08.134
  58. Sakuraba, Y., Kimura, T., Masuya, H., Noguchi, H., Sezutsu, H., Takahasi, K. R., Toyoda, A., Fukumura, R., Murata, T., Sakaki, Y., Yamamura, M., Wakana, S., Noda, T., Shiroishi, T. and Gondo, Y. (2008) Identification and characterization of new long conserved noncoding sequences in vertebrates. Mamm. Genome 19, 703-712 https://doi.org/10.1007/s00335-008-9152-7
  59. Takahasi, K. R., Sakuraba, Y. and Gondo, Y. (2007) Mutational pattern and frequency of induced nucleotide changes in mouse ENU mutagenesis. BMC Molec. Biol. 8, 52 https://doi.org/10.1186/1471-2199-8-52
  60. Erickson, R. P., McQueen, C. A., Chau, B., Gokhale, V., Uchiyama, M., Toyoda, A., Ejima, F., Maho, N., Sakaki, Y. and Gondo Y. (2008) An N-ethyl-N-nitrosourea-induced mutation in N-acetyltransferase 1 in mice. Biochem. Biophys. Res. Commun. 370, 285-288 https://doi.org/10.1016/j.bbrc.2008.03.085
  61. Clapcote, S. J., Lipina, T. V., Millar, J. K., Mackie, S., Christie, S., Ogawa, F., Lerch, J. P., Trimble, K., Uchiyama, M., Sakuraba, Y., Kaneda, H., Shiroishi, T., Houslay, M. D., Henkelman, R. M., Sled, J. G., Gondo, Y., Porteous, D. J. and Roder, J. C. (2007) Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54, 387-402 https://doi.org/10.1016/j.neuron.2007.04.015
  62. Sagai, T., Masuya, H., Tamura, M., Shimizu, K., Yada, Y., Wakana, S., Gondo, Y., Noda, T. and Shiroishi, T. (2004) Phylogenetic conservation of a limb-specific, cis-acting regulator of Sonic hedgehog (Shh). Mamm. Genome 15, 23-34 https://doi.org/10.1007/s00335-033-2317-5
  63. Masuya, H., Sezutsu, H., Sakuraba, Y., Sagai, T., Hosoya, M., Kaneda, H., Miura, I., Kobayashi, K., Sumiyama, K., Shimizu, A., Nagano, J., Yokoyama, H., Kaneko, S., Sakurai, N., Okagaki, Y., Noda, T., Wakana, S., Gondo, Y. and Shiroishi, T. (2007) A series of ENU-induced single-base substitutions in a long-range cis-element altering Sonic hedgehog expression in the developing mouse limb bud. Genomics 89, 207-214 https://doi.org/10.1016/j.ygeno.2006.09.005

Cited by

  1. Colitis locus on chromosome 2 impacting the severity of early-onset disease in mice deficient in GPX1 and GPX2 vol.17, pp.6, 2011, https://doi.org/10.1002/ibd.21479
  2. Genome-wide ENU Mutagenesis for the Discovery of Novel Male Fertility Regulators vol.56, pp.3, 2010, https://doi.org/10.3109/19396361003706424
  3. An siRNA-based screen in C2C12 myoblasts identifies novel genes involved in myogenic differentiation vol.359, pp.1, 2017, https://doi.org/10.1016/j.yexcr.2017.07.037
  4. Mouse models in male fertility research vol.13, pp.1, 2011, https://doi.org/10.1038/aja.2010.101
  5. A new Otogelin ENU mouse model for autosomal-recessive nonsyndromic moderate hearing impairment vol.4, pp.1, 2015, https://doi.org/10.1186/s40064-015-1537-y
  6. Dog models of naturally occurring cancer vol.17, pp.7, 2011, https://doi.org/10.1016/j.molmed.2011.02.004
  7. Mouse Models of Cancer vol.6, pp.1, 2011, https://doi.org/10.1146/annurev.pathol.3.121806.154244
  8. Site-specific integration and tailoring of cassette design for sustainable gene transfer vol.8, pp.10, 2011, https://doi.org/10.1038/nmeth.1674
  9. Model organisms — A historical perspective vol.73, pp.11, 2010, https://doi.org/10.1016/j.jprot.2010.08.002
  10. Validation of adequate endogenous reference genes for the normalisation of qPCR gene expression data in human post mortem tissue vol.124, pp.5, 2010, https://doi.org/10.1007/s00414-010-0433-9
  11. ENU-induced phenovariance in mice: inferences from 587 mutations vol.5, pp.1, 2012, https://doi.org/10.1186/1756-0500-5-577
  12. Human Germline Genetic Modification: Scientific and Bioethical Perspectives vol.43, pp.7, 2012, https://doi.org/10.1016/j.arcmed.2012.09.003
  13. Defective Craniofacial Development and Brain Function in a Mouse Model for Depletion of Intracellular Inositol Synthesis vol.289, pp.15, 2014, https://doi.org/10.1074/jbc.M113.536706
  14. Dissemination of Advanced Mouse Resources and Technologies at RIKEN BioResource Center vol.2, pp.4, 2010, https://doi.org/10.4051/ibc.2010.2.4.0015
  15. Now and future of mouse mutagenesis for human disease models vol.37, pp.9, 2010, https://doi.org/10.1016/S1673-8527(09)60076-X
  16. Embryo and gamete cryopreservation for genetic resources conservation of laboratory animals vol.46, pp.2, 2015, https://doi.org/10.1134/S1062360415020022
  17. -1,3-Galactosyltransferase Knockout Pig Induced Pluripotent Stem Cells: A Cell Source for the Production of Xenotransplant Pigs vol.15, pp.2, 2013, https://doi.org/10.1089/cell.2012.0062