DOI QR코드

DOI QR Code

Expression of miR-210 during erythroid differentiation and induction of γ-globin gene expression

  • Bianchi, Nicoletta (BioPharmaNet, Department of Biochemistry and Molecular Biology, University of Ferrara) ;
  • Zuccato, Cristina (BioPharmaNet, Department of Biochemistry and Molecular Biology, University of Ferrara) ;
  • Lampronti, Ilaria (BioPharmaNet, Department of Biochemistry and Molecular Biology, University of Ferrara) ;
  • Borgatti, Monica (BioPharmaNet, Department of Biochemistry and Molecular Biology, University of Ferrara) ;
  • Gambari, Roberto (BioPharmaNet, Department of Biochemistry and Molecular Biology, University of Ferrara)
  • Published : 2009.08.31

Abstract

MicroRNAs (miRs) are a family of small noncoding RNAs that regulate gene expression by targeting mRNAs in a sequence specific manner, inducing translational repression or mRNA degradation. In this paper we have first analyzed by microarray the miR-profile in erythroid precursor cells from one normal and two thalassemic patients expressing different levels of fetal hemoglobin (one of them displaying HPFH phenotype). The microarray data were confirmed by RT-PCR analysis, and allowed us to identify miR-210 as an highly expressed miR in the erythroid precursor cells from the HPFH patient. When RT-PCR was performed on mithramycin-induced K562 cells and erythroid precursor cells, miR-210 was found to be induced in time-dependent and dose-dependent fashion, together with increased expression of the fetal $\gamma$-globin genes. Altogether, the data suggest that miR-210 might be involved in increased expression of $\gamma$-globin genes in differentiating erythroid cells.

Keywords

References

  1. Sontheimer, E. J. and Carthew, R. W. (2005) Silence from within: endogenous siRNAs and miRNAs. Cell 122, 9-12 https://doi.org/10.1016/j.cell.2005.06.030
  2. Filipowicz, W., Jaskiewicz, L., Kolb, F. A. and Pillai, R .S. (2005) Post-transcriptional gene silencing by siRNAs and miRNAs. Curr. Opin. Struct. Biol. 15, 331-341 https://doi.org/10.1016/j.sbi.2005.05.006
  3. Alvarez-Garcia, I. and Miska, E. A. (2005) MicroRNA functions in animal development and human disease. Development 132, 4653-4662 https://doi.org/10.1242/dev.02073
  4. He, L. and Hannon, G. J. (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522-531 https://doi.org/10.1038/nrg1379
  5. Felli, N., Fontana, L., Pelosi, E., Botta, R, Bonci, D., Facchiano, F., Liuzzi, F., Lulli, V., Morsilli, O., Santoro, S., Valtieri, M., Calin, G. A., Liu, C. G., Sorrentino, A., Croce, C.M. and Peschle, C. (2005) MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl. Acad. Sci. U.S.A. 102, 18081-18086 https://doi.org/10.1073/pnas.0506216102
  6. Choong, M. L., Yang, H. H. and McNiece, I. (2007) MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp. Hematol. 35, 551-564 https://doi.org/10.1016/j.exphem.2006.12.002
  7. Georgantas, R. W. 3rd, Hildreth, R., Morisot, S., Alder, J., Liu, C. G., Heimfeld, S., Calin, G. A., Croce, C. M. and Civin, C. I. (2007) CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc. Natl. Acad. Sci. U.S.A. 104, 2750-2755 https://doi.org/10.1073/pnas.0610983104
  8. Chen, C. Z. and Lodish, H. F. (2005) MicroRNAs as regulators of mammalian hematopoiesis. Semin. Immunol. 17, 155-165 https://doi.org/10.1016/j.smim.2005.01.001
  9. Kluiver, J., Kroesen, B. J., Poppema, S. and van den Berg, A. (2006) The role of microRNAs in normal hematopoiesis and hematopoietic malignancies. Leukemia 20, 1931- 1936 https://doi.org/10.1038/sj.leu.2404387
  10. Masaki, S., Ohtsuka, R., Abe, Y., Muta, K. and Umemura, T. (2007) Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis. Biochem. Biophys. Res. Comm. 364, 509-514 https://doi.org/10.1016/j.bbrc.2007.10.077
  11. Bruchova, H., Yoon, D., Agarwal, A. M., Mendell, J. and Prchal, J. T. (2007) Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp. Hematol. 35, 1657-1667 https://doi.org/10.1016/j.exphem.2007.08.021
  12. Dore, L. C., Amigo, J. D., dos Santos, C. O., Zhang, Z., Gai, X., Tobias, J. W., Yu, D., Klein, A. M., Dorman, C., Wu, W., Hardison, R. C., Paw, B. H. and Weiss, M. J. (2008) A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc. Natl. Acad. Sci. U.S.A. 105, 3333-3338 https://doi.org/10.1073/pnas.0712312105
  13. Kosaka, N., Sugiura, K., Yamamoto, Y., Yoshioka, Y., Miyazaki, H., Komatsu, N., Ochiya, T. and Kato, T. (2008) Identification of erythropoietin-induced microRNAs in haematopoietic cells during erythroid differentiation. Br. J. Haematol. 142, 293-300 https://doi.org/10.1111/j.1365-2141.2008.07151.x
  14. Bianchi, N., Osti, F., Rutigliano, C., Corradini, F. G., Borsetti, E., Tomassetti, M., Mischiati, C., Feriotto, G. and Gambari, R. (1999) The DNA-binding drugs mithramycin and chromomycin are powerful inducers of erythroid differentiation of human K562 cells. Br. J. Haematol. 104, 258-265 https://doi.org/10.1046/j.1365-2141.1999.01173.x
  15. Fibach, E., Bianchi, N., Borgatti, M., Prus, E. and Gambari, R. (2003) Mithramycin induces fetal hemoglobin production in normal and thalassemic human erythroid precursor cells. Blood 102, 1276-1281 https://doi.org/10.1182/blood-2002-10-3096
  16. Gambari, R. and Fibach, E. (2007) Medicinal chemistry of fetal hemoglobin inducers for treatment of beta-thalassemia. Curr. Med. Chem. 14, 199-212 https://doi.org/10.2174/092986707779313318
  17. Lozzio, C. B. and Lozzio, B. B. (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45, 321-334
  18. Bianchi, N., Chiarabelli, C., Borgatti, M., Mischiati, C., Fibach, E. and Gambari, R. (2001) Accumulation of gamma- globin mRNA and induction of erythroid differentiation after treatment of human leukaemic K562 cells with tallimustine. Br. J. Haematol. 113, 951-961 https://doi.org/10.1046/j.1365-2141.2001.02843.x
  19. Feriotto, G., Salvatori, F., Finotti, A., Breveglieri, G., Venturi, M., Zuccato, C., Bianchi, N., Borgatti, M., Lampronti, I., Mancini, I., Massei, F., Favre, C. and Gambari, R. (2008) A novel frameshift mutation (+A) at codon 18 of the beta-globin gene associated with high persistence of fetal hemoglobin phenotype and deltabeta- thalassemia. Acta Haematol. 119, 28-37 https://doi.org/10.1159/000114204
  20. Fibach, E., Manor, D., Oppenheim, A. and Rachmilewitz, E. A. (1989) Proliferation and maturation of human erythroid progenitors in liquid culture. Blood 73, 100-103
  21. Fibach, E., Bianchi, N., Borgatti, M., Zuccato, C., Finotti, A., Lampronti, I., Prus, E., Mischiati, C. and Gambari, R. (2006) Effects of rapamycin on accumulation of alpha-, beta- and gamma-globin mRNAs in erythroid precursor cells from beta-thalassaemia patients. Eur. J. Haematol. 77, 437-441 https://doi.org/10.1111/j.1600-0609.2006.00731.x
  22. Kulshreshtha, R., Ferracin, M., Wojcik, S. E., Garzon, R., Alder, H., Agosto-Perez, F. J., Davuluri, R., Liu, C. G., Croce, C. M., Negrini, M., Calin, G. A. and Ivan, M. (2007) A microRNA signature of hypoxia. Mol. Cell. Biol. 27, 1859-1867 https://doi.org/10.1128/MCB.01395-06
  23. Ivan, M., Harris, A. L., Martelli, F. and Kulshreshtha, R. (2008) Hypoxia response and microRNAs: no longer two separate worlds. J. Cell. Mol. Med. 12, 1426-1431 https://doi.org/10.1111/j.1582-4934.2008.00398.x
  24. Pulkkinen, K., Malm, T., Turunen, M., Koistinaho, J. and Ylä-Herttuala, S. (2008) Hypoxia induces microRNA miR- 210 in vitro and in vivo ephrin-A3 and neuronal pentraxin 1 are potentially regulated by miR-210. FEBS Lett. 582, 2397-23401 https://doi.org/10.1016/j.febslet.2008.05.048
  25. Fasanaro, P., D'Alessandra, Y., Di Stefano, V., Melchionna, R., Romani, S., Pompilio, G., Capogrossi, M. C. and Martelli, F. (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J. Biol. Chem. 283, 15878- 15883 https://doi.org/10.1074/jbc.M800731200
  26. Corn, P. G. (2008) Hypoxic regulation of miR-210: shrinking targets expand HIF-1's influence. Cancer Biol. Ther. 7, 265-267 https://doi.org/10.4161/cbt.7.2.5745
  27. Camps, C., Buffa, F. M., Colella, S., Moore, J., Sotiriou, C., Sheldon, H., Harris, A. L., Gleadle, J. M. and Ragoussis, J. (2008) hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin. Cancer Res. 14, 1340-1348 https://doi.org/10.1158/1078-0432.CCR-07-1755
  28. Giannakakis, A., Sandaltzopoulos, R., Greshock, J., Liang, S., Huang, J., Hasegawa, K., Li, C., O'Brien-Jenkins, A., Katsaros, D., Weber, B. L., Simon, C., Coukos, G. and Zhang, L. (2008) miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol. Ther. 7, 255-264 https://doi.org/10.4161/cbt.7.2.5297
  29. Rogers, H. M., Yu, X., Wen, J., Smith, R., Fibach, E. and Noguch, C. T. (2008) Hypoxia alters progression of the erythroid program. Exp. Hematol. 36, 17-27 https://doi.org/10.1016/j.exphem.2007.08.014
  30. Narayan, A. D., Ersek, A., Campbell, T. A., Colon, D. M., Pixley, J. S. and Zanjani, E. D. (2005) The effect of hypoxia and stem cell source on haemoglobin switching. Br. J. Haematol. 128, 562-570 https://doi.org/10.1111/j.1365-2141.2004.05336.x
  31. Warnecke, C., Zaborowska, Z., Kurreck, J., Erdmann, V. A., Frei, U., Wiesener, M. and Eckardt, K. U. (2004) Differentiating the functional role of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2alpha target gene in Hep3B and Kelly cells. FASEB J. 18, 1462-1464 https://doi.org/10.1096/fj.04-1640fje
  32. Alter, B. P. (1979) Fetal erythropoiesis in stress hematopoiesis. Exp. Hematol. 7, 200-209
  33. Papayannopoulou, T., Vichinsky, E. and Stamatoyannopoulos, G. (1980) Fetal Hb production during acute erythroid expansion. I. Observations in patients with transient erythroblastopenia and post-phlebotomy. Br. J. Haematol. 44, 535-546 https://doi.org/10.1111/j.1365-2141.1980.tb08707.x

Cited by

  1. MicroRNAs as components of regulatory networks controlling erythropoiesis vol.89, pp.1, 2012, https://doi.org/10.1111/j.1600-0609.2012.01774.x
  2. Nuclear Phosphatidylinositol Signaling: Focus on Phosphatidylinositol Phosphate Kinases and Phospholipases C vol.231, pp.8, 2016, https://doi.org/10.1002/jcp.25273
  3. Elevated Expression of miR-210 Predicts Poor Survival of Cancer Patients: A Systematic Review and Meta-Analysis vol.9, pp.2, 2014, https://doi.org/10.1371/journal.pone.0089223
  4. Hypoxia-inducible MicroRNA-210 augments the metastatic potential of tumor cells by targeting vacuole membrane protein 1 in hepatocellular carcinoma vol.54, pp.6, 2011, https://doi.org/10.1002/hep.24614
  5. miRNA therapeutics: delivery and biological activity of peptide nucleic acids targeting miRNAs vol.3, pp.6, 2011, https://doi.org/10.2217/epi.11.90
  6. Targeting pre-miRNA by Peptide Nucleic Acids vol.3, pp.2, 2012, https://doi.org/10.4161/adna.20911
  7. Genetic disruption of theKLF1gene to overexpress the γ-globin gene using the CRISPR/Cas9system vol.18, pp.10, 2016, https://doi.org/10.1002/jgm.2928
  8. MicroRNAs in erythropoiesis and red blood cell disorders vol.10, pp.4, 2015, https://doi.org/10.1007/s11515-015-1365-z
  9. Cellular Uptakes, Biostabilities and Anti-miR-210 Activities of Chiral Arginine-PNAs in Leukaemic K562 Cells vol.13, pp.9, 2012, https://doi.org/10.1002/cbic.201100745
  10. Involvement of miRNA in erythroid differentiation vol.4, pp.1, 2012, https://doi.org/10.2217/epi.11.104
  11. Elevated levels of miR-210 correlate with anemia in β-thalassemia/HbE patients vol.104, pp.3, 2016, https://doi.org/10.1007/s12185-016-2032-0
  12. MicroRNA-96 Directly Inhibits γ-Globin Expression in Human Erythropoiesis vol.6, pp.7, 2011, https://doi.org/10.1371/journal.pone.0022838
  13. What influences Hb fetal production in adulthood? vol.33, pp.3, 2011, https://doi.org/10.5581/1516-8484.20110059
  14. PRL-3 promotes gastric cancer migration and invasion through a NF-κB-HIF-1α-miR-210 axis vol.94, pp.4, 2016, https://doi.org/10.1007/s00109-015-1350-7
  15. Peptide nucleic acids: a review on recent patents and technology transfer vol.24, pp.3, 2014, https://doi.org/10.1517/13543776.2014.863874
  16. Comparison of MicroRNAs Mediated in Reactivation of the γ-Globin in β-Thalassemia Patients, Responders and Non-Responders to Hydroxyurea vol.41, pp.2, 2017, https://doi.org/10.1080/03630269.2017.1290651
  17. Incorporation of Naked Peptide Nucleic Acids into Liposomes Leads to Fast and Efficient Delivery vol.26, pp.8, 2015, https://doi.org/10.1021/acs.bioconjchem.5b00156
  18. Original Research: Stable expression of miR-34a mediates fetal hemoglobin induction in K562 cells vol.241, pp.7, 2016, https://doi.org/10.1177/1535370216636725
  19. Hypoxia-inducible Factor 1-α Induces miR-210 in Normoxic Differentiating Myoblasts vol.287, pp.53, 2012, https://doi.org/10.1074/jbc.M112.421255
  20. An Integrated Approach for Experimental Target Identification of Hypoxia-induced miR-210 vol.284, pp.50, 2009, https://doi.org/10.1074/jbc.M109.052779
  21. Increase of microRNA-210, Decrease of Raptor Gene Expression and Alteration of Mammalian Target of Rapamycin Regulated Proteins following Mithramycin Treatment of Human Erythroid Cells vol.10, pp.4, 2015, https://doi.org/10.1371/journal.pone.0121567
  22. The influence of liposomal formulation on the incorporation and retention of PNA oligomers vol.145, 2016, https://doi.org/10.1016/j.colsurfb.2016.05.034
  23. Modulation of microRNAs expression in hematopoietic stem cells treated with sodium butyrate in inducing fetal hemoglobin expression vol.45, pp.1, 2017, https://doi.org/10.3109/21691401.2016.1138487
  24. microRNA expression in erythropoiesis and erythroid disorders 2009, https://doi.org/10.1111/j.1365-2141.2009.07978.x
  25. miR-210: The Master Hypoxamir vol.19, pp.3, 2012, https://doi.org/10.1111/j.1549-8719.2011.00154.x
  26. Hypoxia-Inducible MiR-210 Is an Independent Prognostic Factor and Contributes to Metastasis in Colorectal Cancer vol.9, pp.3, 2014, https://doi.org/10.1371/journal.pone.0090952
  27. Expression of microRNA-451 in normal and thalassemic erythropoiesis vol.89, pp.10, 2010, https://doi.org/10.1007/s00277-010-0980-7
  28. MiR-210 disturbs mitotic progression through regulating a group of mitosis-related genes vol.41, pp.1, 2013, https://doi.org/10.1093/nar/gks995
  29. Studying the association of microRNA-210 level with chronic hepatitis B progression vol.21, pp.4, 2014, https://doi.org/10.1111/jvh.12138
  30. Does HbF induction by hydroxycarbamide work throughMIR210in sickle cell anaemia patients? vol.173, pp.5, 2016, https://doi.org/10.1111/bjh.13642
  31. Peptide nucleic acids targeting miR-221 modulate p27Kip1 expression in breast cancer MDA-MB-231 cells vol.41, pp.6, 2012, https://doi.org/10.3892/ijo.2012.1632
  32. Elevation of Circulating miR-210-3p in High-Altitude Hypoxic Environment vol.7, 2016, https://doi.org/10.3389/fphys.2016.00084
  33. MicroRNA-363 and GATA-1 are regulated by HIF-1α in K562 cells under hypoxia vol.14, pp.3, 2016, https://doi.org/10.3892/mmr.2016.5578
  34. MicroRNA-486-3p Regulates γ-Globin Expression in Human Erythroid Cells by Directly Modulating BCL11A vol.8, pp.4, 2013, https://doi.org/10.1371/journal.pone.0060436
  35. OxymiRs in cutaneous development, wound repair and regeneration vol.23, pp.9, 2012, https://doi.org/10.1016/j.semcdb.2012.09.012
  36. Recent trends for novel options in experimental biological therapy of β-thalassemia vol.14, pp.10, 2014, https://doi.org/10.1517/14712598.2014.927434
  37. A comprehensive analysis of GATA-1-regulated miRNAs reveals miR-23a to be a positive modulator of erythropoiesis vol.41, pp.7, 2013, https://doi.org/10.1093/nar/gkt093
  38. Enhanced erythroid cell differentiation in hypoxic condition is in part contributed by miR-210 vol.51, pp.2, 2013, https://doi.org/10.1016/j.bcmd.2013.03.005
  39. Targeting microRNAs involved in human diseases: A novel approach for modification of gene expression and drug development vol.82, pp.10, 2011, https://doi.org/10.1016/j.bcp.2011.08.007
  40. Modulation of the Biological Activity of microRNA-210 with Peptide Nucleic Acids (PNAs) vol.6, pp.12, 2011, https://doi.org/10.1002/cmdc.201100270
  41. Regulation of erythroid differentiation by miR-376a and its targets vol.21, pp.8, 2011, https://doi.org/10.1038/cr.2011.79
  42. Expression of microRNA-93 and Interleukin-8 duringPseudomonas aeruginosa–Mediated Induction of Proinflammatory Responses vol.50, pp.6, 2014, https://doi.org/10.1165/rcmb.2013-0160OC
  43. The Regulatory Roles of MicroRNA-146b-5p and Its Target Platelet-derived Growth Factor Receptor α (PDGFRA) in Erythropoiesis and Megakaryocytopoiesis vol.289, pp.33, 2014, https://doi.org/10.1074/jbc.M114.547380
  44. MicroRNA-210 and its theranostic potential vol.20, pp.11, 2016, https://doi.org/10.1080/14728222.2016.1206890
  45. Syncytiotrophoblast Vesicles Show Altered micro-RNA and Haemoglobin Content after Ex-vivo Perfusion of Placentas with Haemoglobin to Mimic Preeclampsia vol.9, pp.2, 2014, https://doi.org/10.1371/journal.pone.0090020
  46. Reciprocal regulation of γ-globin expression by exo-miRNAs: Relevance to γ-globin silencing in β-thalassemia major vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-00150-7
  47. miR-210 has an antiapoptotic effect in pulmonary artery smooth muscle cells during hypoxia vol.303, pp.8, 2012, https://doi.org/10.1152/ajplung.00344.2011
  48. A Feedback Loop Consisting of MicroRNA 23a/27a and the  -Like Globin Suppressors KLF3 and SP1 Regulates Globin Gene Expression vol.33, pp.20, 2013, https://doi.org/10.1128/MCB.00623-13
  49. BCL11A mRNA Targeting by miR-210: A Possible Network Regulating γ-Globin Gene Expression vol.18, pp.12, 2017, https://doi.org/10.3390/ijms18122530
  50. PI3k/AKT signaling pathway: Erythropoiesis and beyond vol.234, pp.3, 2018, https://doi.org/10.1002/jcp.27262
  51. Impact of ZBTB7A hypomethylation and expression patterns on treatment response to hydroxyurea vol.12, pp.1, 2018, https://doi.org/10.1186/s40246-018-0177-z
  52. gene using CRISPR/Cas9 technology for gamma-globin reactivation: An approach towards gene therapy of β-thalassemia vol.119, pp.11, 2018, https://doi.org/10.1002/jcb.27253
  53. Quantitative proteomics reveals that miR-222 inhibits erythroid differentiation by targeting BLVRA and CRKL vol.36, pp.2, 2018, https://doi.org/10.1002/cbf.3321
  54. Omics Studies in Hemoglobinopathies pp.1179-2000, 2019, https://doi.org/10.1007/s40291-019-00386-1