DOI QR코드

DOI QR Code

ATG5 Expression Induced by MDMA (Ecstasy), Interferes with Neuronal Differentiation of Neuroblastoma Cells

  • Chae, Myounghee (Korea Basic Science Institute, Gwangju Center) ;
  • Rhee, Gyu-Seek (Reproductive and Developmental Toxicology Division, National Institute of Toxicological Research, Korea Food and Drug Administration) ;
  • Jang, Ik-Soon (Korea Basic Science Institute, Gwangju Center) ;
  • Kim, Kwangsoo (Korea Basic Science Institute, Gwangju Center) ;
  • Lee, Ji-Hae (Department of Biological Sciences, Yong-In University) ;
  • Lee, Seung-Yeul (Department of Biological Sciences, Yong-In University) ;
  • Kim, Minjung (Department of Biological Sciences, Yong-In University) ;
  • Yang, Junyoung (Reproductive and Developmental Toxicology Division, National Institute of Toxicological Research, Korea Food and Drug Administration) ;
  • Park, Junsoo (Division of Biological Sciences and Technology, Yonsei University) ;
  • Lee, Seung-Hoon (Department of Biological Sciences, Yong-In University)
  • Received : 2009.02.02
  • Accepted : 2009.03.23
  • Published : 2009.05.31

Abstract

The amphetamine derivative 3, 4-methylenedioxymethamphetamine (MDMA) has become a popular recreational drug, and has also been shown to cause serotonergic neurotoxicity. This report shows that MDMA impairs brain development in a whole mouse embryo culture. The results of quantitative real-time PCR analysis showed that autophagy-related protein 5 (Atg5) expression is elevated in mouse embryo and neuroblastoma cells after MDMA treatment. This elevated Atg5 expression interferes with the neuronal differentiation of neuroblastoma cells such as SH-SY5Y and PC12 cells. Thus, our results suggest that the use of MDMA during pregnancy may impair neuronal development via an induction of Atg5 expression.

Keywords

Acknowledgement

Supported by : Korea Food and Drug Administration, Korea Basic Science Institute

References

  1. Baehrecke, E.H. (2003). Autophagic programmed cell death in Drosophila. Cell Death Differ. 10, 940-945 https://doi.org/10.1038/sj.cdd.4401280
  2. Campbell, N.G., Koprich, J.B., Kanaan, N.M., and Lipton, J.W. (2006). MDMA administration to pregnant Sprague-Dawley rats results in its passage to the fetal compartment. Neurotoxicol. Teratol. 28, 459-465 https://doi.org/10.1016/j.ntt.2006.05.006
  3. Cole, J.C., and Sumnall, H.R. (2003). Altered states: the clinical effects of ecstasy. Pharmacol. Ther. 98, 35-58 https://doi.org/10.1016/S0163-7258(03)00003-2
  4. Degenhardt, K., Mathew, R., Beaudoin, B., Bray, K., Anderson, D., Chen, G., Mukherjee, C., Shi, Y., Gelinas, C., Fan, Y., et al. (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10, 51-64 https://doi.org/10.1016/j.ccr.2006.06.001
  5. Encinas, M., Iglesias, M., Liu, Y., Wang, H., Muhaisen, A., Cena, V., Gallego, C., and Comella, J.X. (2000). Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent dependent, human neuron-like cells. J. Neurochem. 75, 991-1003 https://doi.org/10.1046/j.1471-4159.2000.0750991.x
  6. Galineau, L., Belzung, C., Kodas, E., Bodard, S., Guilloteau, D.,and Chalon, S. (2005). Prenatal 3,4-methylenedioxymethamphetamine (ecstasy) exposure induces long-term alterations in the dopaminergic and serotonergic functions in the rat. Brain Res. Dev. Brain Res. 154, 165-176 https://doi.org/10.1016/j.devbrainres.2004.10.012
  7. Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., Yokoyama, M., Mishima, K., Saito, I., Okano, H., et al. (2006). Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885-889 https://doi.org/10.1038/nature04724
  8. Heese, K., Nagai, Y., and Sawada, T. (2004). Nerve growth factor (NGF) induces mRNA expression of the new transcription factor protein p48ZnF. Exp. Mol. Med. 36, 130-134 https://doi.org/10.1038/emm.2004.19
  9. Kim, S., Ghil, S.H., Kim, S.S., Myeong, H.H., Lee, Y.D., and Suh- Kim, H. (2002). Overexpression of neurogenin1 induces neurite outgrowth in F11 neuroblastoma cells. Exp. Mol. Med. 34, 469-475 https://doi.org/10.1038/emm.2002.65
  10. Kim, H.S., Yumkham, S., Kim, S.H., Yea, K., Shin, Y.C., Ryu, S.H., and Suh, P.G. (2004). Secretin induces neurite outgrowth of PC12 through cAMP-mitogen-activated protein kinase pathway. Exp. Mol. Med. 38, 85-93
  11. Kim, S.Y., Seo, M., Oh, J.M., Cho, E.A., and Juhnn, Y.S. (2007). Inhibition of gamma ray-induced apoptosis by stimulatory heterotrimeric GTP binding protein involves Bcl-xL down-regulation in SH-SY5Y human neuroblastoma cells. Exp. Mol. Med. 39, 583-593 https://doi.org/10.1038/emm.2007.64
  12. Kuma, A., Hatano, M., Matsui, M., Yamamoto, A., Nakaya, H., Yoshimori, T., Ohsumi, Y., Tokuhisa, T., and Mizushima, N. (2004). The role of autophagy during the early neonatal starvation period. Nature 432, 1032-1036 https://doi.org/10.1038/nature03029
  13. Lee, M.K., Kang, S.J., Poncz, M., Song, K.J., and Park, K.S. (2007). Resveratrol protects SH-SY5Y neuroblastoma cells from apoptosis induced by dopamine. Exp. Mol. Med. 39, 376-384 https://doi.org/10.1038/emm.2007.42
  14. Levine, B. (2005). Eating oneself and uninvited guests: autophagyrelated pathways in cellular defense. Cell 120, 159-162 https://doi.org/10.1016/j.cell.2005.01.005
  15. Levine, B., and Klionsky, D.J. (2004). Development by selfdigestion:molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463-477 https://doi.org/10.1016/S1534-5807(04)00099-1
  16. Melendez, A., Talloczy, Z., Seaman, M., Eskelinen, E.L., Hall, D.H., and Levine, B. (2003). Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387-1391 https://doi.org/10.1126/science.1087782
  17. New, D.A. (1978). Whole-embryo culture and the study of mammalian embryos during organogenesis. Biol. Rev. Camb. Philos. Soc. 53, 81-122 https://doi.org/10.1111/j.1469-185X.1978.tb00993.x
  18. Pyo, J.O., Jang, M.H., Kwon, Y.K., Lee, H.J., Jun, J.I., Woo, H.N., Cho, D.H., Choi, B., Lee, H., Kim, J.H., et al. (2005). Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J. Biol. Chem. 280, 20722-20729 https://doi.org/10.1074/jbc.M413934200
  19. Raff, M.C., Barres, B.A., Burne, J.F., Coles, H.S., Ishizaki, Y., and Jacobson, M.D. (1993). Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262, 695-700 https://doi.org/10.1126/science.8235590
  20. Sumnall, H.R., Jerome, L., Doblin, R., and Mithoefer, M.C. (2004). Response to: Parrott, A.C., Buchanan, T., Heffernan, T.M., Scholey, A., Ling, J., and Rodgers, J. (2003) Parkinson's disorder, psychomotor problems and dopaminergic neurotoxicity in recreational ecstasy/MDMA users. Psychopharmacology 167(4): 449-450. Psychopharmacology 171, 229-230 https://doi.org/10.1007/s00213-003-1447-5
  21. Yamazaki, Y., Tsuruga, M., Zhou, D., Fujita, Y., Shang, X., Dang, Y., Kawasaki, K., and Oka, S. (2000). Cytoskeletal disruption accelerates caspase-3 activation and alters the intracellular membrane reorganization in DNA damage-induced apoptosis. Exp. Cell Res. 259, 64-78 https://doi.org/10.1006/excr.2000.4970
  22. Zeng, M., and Zhou, J.N. (2008). Roles of autophagy and mTOR signaling in neuronal differentiation of mouse neuroblastoma cells. Cell Signal. 20, 659-665 https://doi.org/10.1016/j.cellsig.2007.11.015
  23. Zhu, C., Wang, X., Hagberg, H., and Blomgren, K. (2000). Correlation between caspase-3 activation and three different markers of DNA damage in neonatal cerebral hypoxia-ischemia. J. Neurochem. 75, 819-829 https://doi.org/10.1046/j.1471-4159.2000.0750819.x

Cited by

  1. Autophagy Activation Is Involved in 3,4-Methylenedioxymethamphetamine (‘Ecstasy’)—Induced Neurotoxicity in Cultured Cortical Neurons vol.9, pp.12, 2014, https://doi.org/10.1371/journal.pone.0116565
  2. A Variant of the Autophagy-Related 5 Gene Is Associated with Child Cerebral Palsy vol.11, pp.None, 2017, https://doi.org/10.3389/fncel.2017.00407
  3. Journey to the Center of the Fetal Brain: Environmental Exposures and Autophagy vol.12, pp.None, 2009, https://doi.org/10.3389/fncel.2018.00118