DOI QR코드

DOI QR Code

Two key genes closely implicated with the neuropathological characteristics in Down syndrome: DYRK1A and RCAN1

  • Park, Joong-Kyu (Department of Biology, College of Life Science and Biotechnology, Yonsei University) ;
  • Oh, Yo-Han (Department of Biology, College of Life Science and Biotechnology, Yonsei University) ;
  • Chung, Kwang-Chul (Department of Biology, College of Life Science and Biotechnology, Yonsei University)
  • Published : 2009.01.31

Abstract

The most common genetic disorder Down syndrome (DS) displays various developmental defects including mental retardation, learning and memory deficit, the early onset of Alzheimer's disease (AD), congenital heart disease, and craniofacial abnormalities. Those characteristics result from the extra-genes located in the specific region called 'Down syndrome critical region (DSCR)' in human chromosome 21. In this review, we summarized the recent findings of the DYRK1A and RCAN1 genes, which are located on DSCR and thought to be closely associated with the typical features of DS patients, and their implication to the pathogenesis of neural defects in DS. DYRK1A phosphorylates several transcriptional factors, such as CREB and NFAT, endocytic complex proteins, and AD-linked gene products. Meanwhile, RCAN1 is an endogenous inhibitor of calcineurin A, and its unbalanced activity is thought to cause major neuronal and/or non-neuronal malfunction in DS and AD. Interestingly, they both contribute to the learning and memory deficit, altered synaptic plasticity, impaired cell cycle regulation, and AD-like neuropathology in DS. By understanding their biochemical, functional and physiological roles, we hope to get important molecular basis of DS pathology, which would consequently lead to the basis to develop the possible therapeutic tools for the neural defects in DS.

Keywords

References

  1. Down, J. L. H. (1866) Observations on an ethnic classification of idiots. London Hosp. Clin. Lect. Rep. 3, 259-262
  2. Lejeune, J., Gautier, M. and Turpin, R. (1959) Etude des chromosomes somatiques de neuf enfants mongoliens. C. R. Acad. Sci. 248, 1721-1722
  3. Antonarakis, S. E., Lyle, R., Dermitzakis, E. T., Reymond, A. and Deutsch, S. (2004) Chromosome 21 and Down syndrome: from genomics to pathophysiology. Nat. Rev. Genet. 5, 725-738 https://doi.org/10.1038/nrg1448
  4. Roizen, N. J. and Patterson, D. (2003) Down's syndrome. The Lancet 361, 1281-1289 https://doi.org/10.1016/S0140-6736(03)12987-X
  5. Hasle, H., Clemmensen, I. H. and Mikkelsen, M. (2000) Risks of leukaemia and solid tumours in individuals with Down's syndrome. The Lancet 355, 165-169 https://doi.org/10.1016/S0140-6736(99)05264-2
  6. Wisniewski, K. E., Laure-Kamionowska, M. and Wisniewski, H. M. (1984) Evidence of arrest of neurogenesis and synaptogenesis in brains of patients with Down's syndrome. N. Engl. J. Med. 311, 1187-1188
  7. Wisniewski, K. E., Wisniewski, H. M. and Wen, G. Y. (1985) Occurrence of neuropathological changes and dementia of Alzheimer's disease in Down's syndrome. Ann. Neurol. 17, 278-282 https://doi.org/10.1002/ana.410170310
  8. Mann, D. M. A., Yates, P. O., Marcyniuk, B. and Ravindra, C. R. (1987) Loss of neurones from cortical and subcortical areas in Down's syndrome patients at middle age: quantitative comparisons with younger Down's patients and patients with Alzheimer's disease. J. Neurol. Sci. 80, 79-89 https://doi.org/10.1016/0022-510X(87)90223-1
  9. Tanzi, R. E. (1996) Neuropathology in the Down's syndrome brain. Nat. Med. 2, 31-32 https://doi.org/10.1038/nm0196-31
  10. Kimura, M., Cao, X., Skurnick, J., Cody, M., Soteropoulos, P. and Aviv, A. (2005) Proliferation dynamics in cultured skin fibroblasts from Down syndrome subjects. Free Radic. Biol. Med. 39, 374-380 https://doi.org/10.1016/j.freeradbiomed.2005.03.023
  11. Contestabile, A., Fila, T., Ceccarelli, C., Bonasoni, P., Bonapace, L., Santini, D., Bartesaghi, R. and Ciani, E. (2007) Cell cycle alteration and decreased cell proliferation in the hippocampal dentate gyrus and in the neocortical germinal matrix of fetuses with down syndrome and in Ts65Dn mice. Hippocampus 17, 665-678 https://doi.org/10.1002/hipo.20308
  12. Aylward, E. H., Habbak, R., Warren, A. C., Pulsifer, M. B., Barta, P. E., Jerram, M. and Pearlson, G. D. (1997) Cerebellar volume in adults with Down syndrome. Arch. Neurol. 54, 209-212 https://doi.org/10.1001/archneur.1997.00550140077016
  13. Aylward, E. H., Li, Q., Honeycutt, N. A., Warren, A. C., Pulsifer, M. B., Barta, P. E., Chan, M. D., Smith, P. D., Jerram, M. and Pearlson, G. D. (1999) MRI volumes of the hippocampus and amygdala in adults with Down's syndrome with and without dementia. Am. J. Psychiatry 156, 564-568
  14. Ross, M. H., Galaburda, A. M. and Kemper, T. L. (1984) Down's syndrome: is there a decreased population of neurons? Neurology 34, 909-916 https://doi.org/10.1212/WNL.34.7.909
  15. Wisniewski, K. E., Dalton, A. J., McLachlan, C., Wen, G. Y. and Wisniewski, H. M. (1985) Alzheimer's disease in Down's syndrome: clinicopathologic studies. Neurology 35, 957-961 https://doi.org/10.1212/WNL.35.7.957
  16. Teller, J. K., Russo, C., Debusk, L. M., Angelini, G., Zaccheo, D., Dagna-Bricarelli, F., Scartezzini, P., Bertolini, S., Mann, D. M. A., Tabaton, M. and Gambetti, P. (1996) Presence of soluble amyloid beta-peptide precedes amyloid plaque formation in Down's syndrome. Nat. Med. 2, 93-95 https://doi.org/10.1038/nm0196-93
  17. Mann, D. M. A. (1988) Alzheimer's disease and Down's syndrome. Histopathology 13, 125-13 https://doi.org/10.1111/j.1365-2559.1988.tb02018.x
  18. Lubec, G. and Engidawork, E. (2002) The brain in Down syndrome (TRISOMY 21). J. Neurol. 249, 1347-1356 https://doi.org/10.1007/s00415-002-0799-9
  19. McCormick, M. K., Schinzel, A., Petersen, M. B., Stetten, G., Driscoll, D. J., Cantu, E. S., Tranebjaerg, L., Mikkelsen, M., Watkins, P. C. and Antonarakis, S. E. (1989) Molecular genetic approach to the characterization of the 'Down syndrome region' of chromosome 21. Genomics 5, 325-331 https://doi.org/10.1016/0888-7543(89)90065-7
  20. Korenberg, J. R., Kawashima, H., Pulst, S. M., Ikeuchi, T., Ogasawara, N., Yamamoto, K., Schonberg, S. A., West, R., Allen, L., Magenis, E., Ikawa, K., Taniguchi, N. and Epstein, C. J. (1990) Molecular definition of a region of chromosome 21 that causes features of the Down syndrome phenotype. Am. J. Hum. Genet. 47, 236-246
  21. Delabar, J. M., Theophile, D., Rahmani, Z., Chettouh, Z., Blouin, J. L., Prieur, M., Noel, B. and Sinet, P. M. (1993) Molecular mapping of twenty-four features of Down syndrome on chromosome 21. Eur. J. Hum. Genet. 1, 114-124 https://doi.org/10.1159/000472398
  22. Davisson, M. T. and Costa, A. C. S. (1999) Mouse models of Down syndrome; in Mouse Models in the Study of Genetic Neurological Disorders Advances in Neurochemistry vol. 9, Popko, B. (ed.) pp. 297-327, Plenum, New York, USA
  23. Sago, H., Carlson, E. J., Smith, D. J., Kilbridge, J., Rubin, E. M., Mobley, W. C., Epstein, C. J. and Huang, T. T. (1998) Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. Proc. Natl. Acad. Sci. U.S.A. 95, 6256-6261 https://doi.org/10.1073/pnas.95.11.6256
  24. Holtzman, D. M., Santucci, D., Kilbridge, J., Chua-Couzens, J., Fontana, D. J., Daniels, S. E., Johnson, R. M., Chen, K., Sun, Y., Carlson, E., Alleva, E., Epstein, C. J. and Mobley, W. C. (1996) Developmental abnormalities and age-related neurodegeneration in a mouse model of Down syndrome. Proc. Natl. Acad. Sci. U.S.A. 93, 13333-13338 https://doi.org/10.1073/pnas.93.23.13333
  25. Lorenzi, H. A. and Reeves, R. H. (2006) Hippocampal hypocellularity in the Ts65Dn mouse originates early in development. Brain Res. 1104, 153-159 https://doi.org/10.1016/j.brainres.2006.05.022
  26. Kurt, M. A., Kafa, M. I., Dierssen, M. and Davies, D. C. (2004) Deficits of neuronal density in CA1 and synaptic density in the dentate gyrus, CA3 and CA1, in a mouse model of Down syndrome. Brain Res. 1022, 101-109 https://doi.org/10.1016/j.brainres.2004.06.075
  27. O'Doherty, A., Ruf, S., Mulligan, C., Hildreth, V., Errington, M. L., Cooke, S., Sesay, A., Modino, S., Vanes, L., Hernandez, D., Linehan, J. M., Sharpe, P. T., Brandner, S., Bliss, T. V., Henderson, D. J., Nizetic, D., Tybulewicz, V. L. and Fisher, E. M. (2005) An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 309, 2033-2037 https://doi.org/10.1126/science.1114535
  28. Guimera, J., Casas, C., Pucharcos, C., Solans, A., Domenech, A., Planas, A. M., Ashley, J., Lovett, M., Estivill, X. and Pritchard, M. A. (1996) A human homologue of Drosophila minibrain (MNB) is expressed in the neuronal regions affected in Down syndrome and maps to the critical region. Hum. Mol. Genet. 5, 1305-1310 https://doi.org/10.1093/hmg/5.9.1305
  29. Song, W. -J., Sternberg, L. R., Kasten-Sportes, C., Keuren, M. L. V., Chung, S. -H., Slack, A. C., Miller, D. E., Glover, T. W., Chiang, P. -W., Lou, L. and Kurnit, D. M. (1996) Isolation of human and murine homologues of the Drosophila minibrain gene: human homologue maps to 21q22.2 in the Down syndrome 'critical region'. Genomics 38, 331-339 https://doi.org/10.1006/geno.1996.0636
  30. Himpel, S., Tegge, W., Frank, R., Leder, S., Joost, H. -G. and Becker, W. (2000) Specificity determinants of substrate recognition by the protein kinase DYRK1A. J. Biol. Chem. 275, 2431-2438 https://doi.org/10.1074/jbc.275.4.2431
  31. Yang, E. J., Ahn, Y. S. and Chung, K. C. (2001) Protein kinase Dyrk1 activates cAMP response element-binding protein during neuronal differentiation in hippocampal progenitor cells. J. Biol. Chem. 276, 39819-39824 https://doi.org/10.1074/jbc.M104091200
  32. Arron, J. R., Winslow, M. M., Polleri, A., Chang, C. -P., Wu, H., Gao, X., Neilson, J. R., Chen, L., Heit, J. J., Kim, S. K., Yamasaki, N., Miyakawa, T., Francke, U., Graef, I. A. and Crabtree, G. R. (2006) NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441, 595-600 https://doi.org/10.1038/nature04678
  33. Gwack, Y., Sharma, S., Nardone, J., Tanasa, B., Iuga, A., Srikanth, S., Okamura, H., Bolton, D., Feske, S., Hogan, P. G. and Rao, A. (2006) A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 441, 646-650 https://doi.org/10.1038/nature04631
  34. Woods, Y. L., Rena, G., Morrice, N., Barthel, A., Becker, W., Guo, S., Unterman, T. G. and Cohen, P. (2001) The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site. Biochem. J. 355, 597-607 https://doi.org/10.1042/bj3550597
  35. Chen-Hwang, M. -C., Chen, H. -R., Elzinga, M. and Hwang, Y. -W. (2002) Dynamin is a Minibrain kinase/Dual specificity Yak1-related kinase 1A substrate. J. Biol. Chem. 277, 17597-17604 https://doi.org/10.1074/jbc.M111101200
  36. Murakami, N., Xie, W., Lu, R. C., Chen-Hwang, M. -C., Wieraszko, A. and Hwang, Y. W. (2006) Phosphorylation of Amphiphysin I by Minibrain kinase/Dual-specificity tyrosine phosphorylation-regulated kinase, a kinase implicated in Down syndrome. J. Biol. Chem. 281, 23712-23724 https://doi.org/10.1074/jbc.M513497200
  37. Woods, Y. L., Cohen, P., Becker, W., Jakes, R., Goedert, M., Wang, X. and Proud, C. G. (2001) The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2Bepsilon at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochem. J. 355, 609-615 https://doi.org/10.1042/bj3550609
  38. Skurat, A. V. and Dietrich, A. D. (2004) Phosphorylation of Ser640 in muscle glycogen synthase by DYRK family protein kinases. J. Biol. Chem. 279, 2490-2498 https://doi.org/10.1074/jbc.M301769200
  39. Ahn, K. -J., Jeong, H. K., Choi, H. -S., Ryoo, S. -R., Kim, Y. J., Goo, J. -S., Choi, S. -Y., Han, J. -S., Ha, I. and Song, W. -J. (2006) DYRK1A BAC transgenic mice show altered synaptic plasticity with learning and memory defects. Neurobiol. Dis. 22, 463-472 https://doi.org/10.1016/j.nbd.2005.12.006
  40. Ryoo, S. -R., Jeong, H. K., Radnaabazar, C., Yoo, J. -J., Cho, H. -J., Lee, H. -W., Kim, I. -S., Cheon, Y. -H., Ahn, Y. S., Chung, S. -H. and Song, W. -J. (2007) DYRK1A-mediated hyperphosphorylation of Tau. A functional link between Down syndrome and Alzheimer disease. J. Biol. Chem. 282, 34850-34857 https://doi.org/10.1074/jbc.M707358200
  41. Ryoo, S. -R., Cho, H. -J., Lee, H. -W., Jeong, H. K., Radnaabazar, C., Kim, Y. -S., Kim, M. -J., Son, M. -Y., Seo, H., Chung, S. -H. and Song, W. -J. (2008) Dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1A-mediated phosphorylation of amyloid precursor protein: evidence for a functional link between Down syndrome and Alzheimer's disease. J. Neurochem. 104, 1333-1344 https://doi.org/10.1111/j.1471-4159.2007.05075.x
  42. Altafaj, X., Dierssen, M., Baamonde, C., Marti, E., Visa, J., Guimera, J., Oset, M., Gonzalez, J. R., Florez, J., Fillat, C. and Estivill, X. (2001) Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down's syndrome. Hum. Mol. Genet. 10, 1915-1923 https://doi.org/10.1093/hmg/10.18.1915
  43. Altafaj, X., Ortiz-Abalia, J., Fernandez, M., Potier, M. C., Laffaire, J., Andreu, N., Dierssen, M., Gonzalez-Garcia, C., Cena, V., Marti, E. and Fillat, C. (2008) Increased NR2A expression and prolonged decay of NMDA-induced calcium transient in cerebellum of TgDyrk1A mice, a mouse model of Down syndrome. Neurobiol. Dis. 32, 377-384 https://doi.org/10.1016/j.nbd.2008.07.024
  44. Smith, D. J., Stevens, M. E., Sudanagunta, S. P., Bronson, R. T., Makhinson, M., Watabe, A. M., O'Dell, T. J., Fung, J., Weier, H. -U. G., Cheng, J. -F. and Rubin, E. M. (1997) Functional screening of 2 Mb of human chromosome 21q22.2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome. Nat. Genet. 16, 28-36 https://doi.org/10.1038/ng0597-28
  45. Branchi, I., Bichler, Z., Minghetti, L., Delabar, J. M., Malchiodi-Albedi, F., Gonzalez, M. C., Chettouh, Z., Nicolini, A., Chabert, C., Smith, D. J., Rubin, E. M., Migliore-Samour, D. and Alleva, E. (2004) Transgenic mouse in vivo library of human Down syndrome critical region 1: association between DYRK1A overexpression, brain development abnormalities, and cell cycle protein alteration. J. Neuropathol. Exp. Neurol. 63, 429-440 https://doi.org/10.1093/jnen/63.5.429
  46. Lippa, C. F., Schmidt, M. L., Lee, V. M. and Trojanowski, J. Q. (1999) Antibodies to alpha-synuclein detect Lewy bodies in many Down's syndrome brains with Alzheimer's disease. Ann. Neurol. 45, 353-357 https://doi.org/10.1002/1531-8249(199903)45:3<353::AID-ANA11>3.0.CO;2-4
  47. Simard, M. and van Reekum, R. (2001) Dementia with Lewy bodies in Down's syndrome. Int. J. Geriatr. Psychiatry 16, 311-320 https://doi.org/10.1002/gps.342
  48. Dowjat, W. K., Adayev, T., Kuchna, I., Nowicki, K., Palminiello, S., Hwang, Y. W. and Wegiel, J. (2007) Trisomy-driven overexpression of DYRK1A kinase in the brain of subjects with Down syndrome. Neurosci. Lett. 413, 77-81 https://doi.org/10.1016/j.neulet.2006.11.026
  49. Park, J., Yang, E. J., Yoon, J. H. and Chung, K. C. (2007) Dyrk1A overexpression in immortalized hippocampal cells produces the neuropathological features of Down syndrome. Mol. Cell Neurosci. 36, 270-279 https://doi.org/10.1016/j.mcn.2007.07.007
  50. Liu, F., Liang, Z., Wegiel, J., Hwang, Y. -W., Iqbal, K., Grundke-Iqbal, I., Ramakrishna, N. and Gong, C. -X. (2008) Overexpression of Dyrk1A contributes to neurofibrillary degeneration in Down syndrome. FASEB J. 22, 3224-3233 https://doi.org/10.1096/fj.07-104539
  51. Wegiel, J., Dowjat, K., Kaczmarski, W., Kuchna, I., Nowicki, K., Frackowiak, J., Mazur Kolecka, B., Wegiel, J., Silverman, W. P., Reisberg, B., Deleon, M., Wisniewski, T., Gong, C. X., Liu, F., Adayev, T., Chen-Hwang, M. C. and Hwang, Y. W. (2008) The role of overexpressed DYRK1A protein in the early onset of neurofibrillary degeneration in Down syndrome. Acta. Neuropathol. 116, 391-407 https://doi.org/10.1007/s00401-008-0419-6
  52. Ferrer, I., Barrachina, M., Puig, B., de Lagran, M. M., Marti, E., Avila, J. and Dierssen, M. (2005) Constitutive Dyrk1A is abnormally expressed in Alzheimer disease, Down syndrome, Pick disease, and related transgenic models. Neurobiol. Dis. 20, 392-400 https://doi.org/10.1016/j.nbd.2005.03.020
  53. Kimura, R., Kamino, K., Yamamoto, M., Nuripa, A., Kida, T., Kazui, H., Hashimoto, R., Tanaka, T., Kudo, T., Yamagata, H., Tabara, Y., Miki, T., Akatsu, H., Kosaka, K., Funakoshi, E., Nishitomi, K., Sakaguchi, G., Kato, A., Hattori, H., Uema, T. and Takeda, M. (2007) The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between {beta}-amyloid production and tau phosphorylation in Alzheimer disease. Hum. Mol. Genet. 16, 15-23 https://doi.org/10.1093/hmg/ddl437
  54. Kim, E. J., Sung, J. Y., Lee, H. J., Rhim, H., Hasegawa, M., Iwatsubo, T., Min, D. S., Kim, J., Paik, S. R. and Chung, K. C. (2006) Dyrk1A phosphorylates alpha-synuclein and enhances intracellular inclusion formation. J. Biol. Chem. 281, 33250-33257 https://doi.org/10.1074/jbc.M606147200
  55. Sitz, J. H., Baumgartel, K., Hammerle, B., Papadopoulos, C., Hekerman, P., Tejedor, F. J., Becker, W. and Lutz, B. (2008) The Down syndrome candidate dual-specificity tyrosine phosphorylation-regulated kinase 1A phosphorylates the neurodegeneration-related septin 4. Neuroscience 157, 596-605 https://doi.org/10.1016/j.neuroscience.2008.09.034
  56. Gusella, J. F. and MacDonald, M. E. (2000) Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nat. Rev. Neurosci. 1, 109-115 https://doi.org/10.1038/35039051
  57. Kang, J. E., Choi, S. A., Park, J. B. and Chung, K. C. (2005) Regulation of the proapoptotic activity of huntingtin interacting protein 1 by Dyrk1 and caspase-3 in hippocampal neuroprogenitor cells. J. Neurosci. Res. 81, 62-72 https://doi.org/10.1002/jnr.20534
  58. Fuentes, J. J., Pritchard, M. A. and Estivill, X. (1997) Genomic organization, alternative splicing, and expression patterns of the DSCR1 (Down syndrome candidate region 1) gene. Genomics 44, 358-361 https://doi.org/10.1006/geno.1997.4866
  59. Genesca, L., Aubareda, A., Fuentes, J. J., Estivill, X., De La Luna, S. and Perez-Riba, M. (2003) Phosphorylation of calcipressin 1 increases its ability to inhibit calcineurin and decreases calcipressin half-life. Biochem. J. 374, 567-575 https://doi.org/10.1042/BJ20030267
  60. Ermak, G., Harris, C. D. and Davies, K. J. (2002) The DSCR1 (Adapt78) isoform 1 protein calcipressin 1 inhibits calcineurin and protects against acute calcium-mediated stress damage, including transient oxidative stress. FASEB J. 16, 814-824 https://doi.org/10.1096/fj.01-0846com
  61. Crawford, D. R., Leahy, K. P., Abramova, N., Lan, L., Wang, Y. and Davies, K. J. (1997) Hamster adapt78 mRNA is a Down syndrome critical region homologue that is inducible by oxidative stress. Arch. Biochem. Biophys. 342, 6-12 https://doi.org/10.1006/abbi.1997.0109
  62. Yang, J., Rothermel, B., Vega, R. B., Frey, N., McKinsey, T. A., Olson, E. N., Bassel-Duby, R. and Williams, R. S. (2000) Independent signals control expression of the calcineurin inhibitory proteins MCIP1 and MCIP2 in striated muscles. Circ. Res. 87, E61-68 https://doi.org/10.1161/01.RES.87.12.e61
  63. Zhao, P., Xiao, X., Kim, A. S., Leite, M. F., Xu, J., Zhu, X., Ren, J. and Li, J. (2008) c-Jun inhibits thapsigargin-induced ER stress through up-regulation of DSCR1/Adapt78. Exp. Biol. Med. (Maywood) 233, 1289-1300 https://doi.org/10.3181/0803-RM-84
  64. Liu, X., Zhao, D., Qin, L., Li, J. and Zeng, H. (2008) Transcription enhancer factor 3 (TEF3) mediates the expression of down syndrome candidate region 1 Isoform 1 (DSCR1-1L) in endothelial cells. J. Biol. Chem. 283, 34159-34167 https://doi.org/10.1074/jbc.M806338200
  65. U, M., Shen, L., Oshida, T., Miyauchi, J., Yamada, M. and Miyashita, T. (2004) Identification of novel direct transcriptional targets of glucocorticoid receptor. Leukemia 18, 1850-1856 https://doi.org/10.1038/sj.leu.2403516
  66. Rothermel, B., Vega, R. B., Yang, J., Wu, H., Bassel-Duby, R. and Williams, R. S. (2000) A protein encoded within the Down syndrome critical region is enriched in striated muscles and inhibits calcineurin signaling. J. Biol. Chem. 275, 8719-8725 https://doi.org/10.1074/jbc.275.12.8719
  67. Fuentes, J. J., Genesca, L., Kingsbury, T. J., Cunningham, K. W., Perez-Riba, M., Estivill, X. and de la Luna, S. (2000) DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways. Hum. Mol. Genet. 9, 1681-1690 https://doi.org/10.1093/hmg/9.11.1681
  68. Kingsbury, T. J. and Cunningham, K. W. (2000) A conserved family of calcineurin regulators. Genes Dev. 14, 1595-1604
  69. Vega, R. B., Rothermel, B. A., Weinheimer, C. J., Kovacs, A., Naseem, R. H., Bassel-Duby, R., Williams, R. S. and Olson, E. N. (2003) Dual roles of modulatory calcineurin-interacting protein 1 in cardiac hypertrophy. Proc. Natl. Acad. Sci. U.S.A. 100, 669-674 https://doi.org/10.1073/pnas.0237225100
  70. Minami, T., Horiuchi, K., Miura, M., Abid, M. R., Takabe, W., Noguchi, N., Kohro, T., Ge, X., Aburatani, H., Hamakubo, T., Kodama, T. and Aird, W. C. (2004) Vascular endothelial growth factor- and thrombin-induced termination factor, Down syndrome critical region-1, attenuates endothelial cell proliferation and angiogenesis. J. Biol. Chem. 279, 50537-50554 https://doi.org/10.1074/jbc.M406454200
  71. Minami, T., Miura, M., Aird, W. C. and Kodama, T. (2006) Thrombin-induced autoinhibitory factor, Down syndrome critical region-1, attenuates NFAT-dependent vascular cell adhesion molecule-1 expression and inflammation in the endothelium. J. Biol. Chem. 281, 20503-20520 https://doi.org/10.1074/jbc.M513112200
  72. Lee, E. J., Seo, S. R., Um, J. W., Park, J., Oh, Y. and Chung, K. C. (2008) NF-κB-inducing kinase phosphorylates and blocks the degradation of Down syndrome candidate region 1. J. Biol. Chem. 283, 3392-3400 https://doi.org/10.1074/jbc.M706707200
  73. Kim, Y. S., Cho, K. O., Lee, H. J., Kim, S. Y., Sato, Y. and Cho, Y. J. (2006) Down syndrome candidate region 1 increases the stability of the IκBα protein: implications for its anti-inflammatory effects. J. Biol. Chem. 281, 39051-39061 https://doi.org/10.1074/jbc.M604659200
  74. Abbasi, S., Su, B., Kellems, R. E., Yang, J. and Xia, Y. (2005) The essential role of MEKK3 signaling in angiotensin II-induced calcineurin/nuclear factor of activated T-cells activation. J. Biol. Chem. 280, 36737-36746 https://doi.org/10.1074/jbc.M506493200
  75. Abbasi, S., Lee, J. D., Su, B., Chen, X., Alcon, J. L., Yang, J., Kellems, R. E. and Xia, Y. (2006) Protein kinase-mediated regulation of calcineurin through the phosphorylation of modulatory calcineurin-interacting protein 1. J. Biol. Chem. 281, 7717-7726 https://doi.org/10.1074/jbc.M510775200
  76. Hilioti, Z., Gallagher, D. A., Low-Nam, S. T., Ramaswamy, P., Gajer, P., Kingsbury, T. J., Birchwood, C. J., Levchenko, A. and Cunningham, K. W. (2004) GSK-3 kinases enhance calcineurin signaling by phosphorylation of RCNs. Genes Dev. 18, 35-47 https://doi.org/10.1101/gad.1159204
  77. Aubareda, A., Mulero, M. C. and Perez-Riba, M. (2006) Functional characterization of the calcipressin 1 motif that suppresses calcineurin-mediated NFAT-dependent cytokine gene expression in human T cells. Cell Signal. 18, 1430-1438 https://doi.org/10.1016/j.cellsig.2005.11.006
  78. Vega, R. B., Yang, J., Rothermel, B. A., Bassel-Duby, R. and Williams, R. S. (2002) Multiple domains of MCIP1 contribute to inhibition of calcineurin activity. J. Biol. Chem. 277, 30401-30407 https://doi.org/10.1074/jbc.M200123200
  79. Leahy, K. P. and Crawford, D. R. (2000) adapt78 protects cells against stress damage and suppresses cell growth. Arch. Biochem. Biophys. 379, 221-228 https://doi.org/10.1006/abbi.2000.1897
  80. Qin, L., Zhao, D., Liu, X., Nagy, J. A., Hoang, M. V., Brown, L. F., Dvorak, H. F. and Zeng, H. (2006) Down syndrome candidate region 1 isoform 1 mediates angiogenesis through the calcineurin-NFAT pathway. Mol. Cancer Res. 4, 811-820 https://doi.org/10.1158/1541-7786.MCR-06-0126
  81. Hoeffer, C. A., Dey, A., Sachan, N., Wong, H., Patterson, R. J., Shelton, J. M., Richardson, J. A., Klann, E. and Rothermel, B. A. (2007) The Down syndrome critical region protein RCAN1 regulates long-term potentiation and memory via inhibition of phosphatase signaling. J. Neurosci. 27, 13161-13172 https://doi.org/10.1523/JNEUROSCI.3974-07.2007
  82. Chang, K. T., Shi, Y. J. and Min, K. T. (2003) The Drosophila homolog of Down's syndrome critical region 1 gene regulates learning: implications for mental retardation. Proc. Natl. Acad. Sci. U.S.A. 100, 15794-15799 https://doi.org/10.1073/pnas.2536696100
  83. Chang, K. T. and Min, K. T. (2005) Drosophila melanogaster homolog of Down syndrome critical region 1 is critical for mitochondrial function. Nat. Neurosci. 8, 1577-1585 https://doi.org/10.1038/nn1564
  84. Porta, S., Serra, S. A., Huch, M., Valverde, M. A., Llorens, F., Estivill, X., Arbones, M. L. and Marti, E. (2007) RCAN1 (DSCR1) increases neuronal susceptibility to oxidative stress: a potential pathogenic process in neurodegeneration. Hum. Mol. Genet. 16, 1039-1050 https://doi.org/10.1093/hmg/ddm049
  85. Keating, D. J., Dubach, D., Zanin, M. P., Yu, Y., Martin, K., Zhao, Y. F., Chen, C., Porta, S., Arbones, M. L., Mittaz, L. and Pritchard, M. A. (2008) DSCR1/RCAN1 regulates vesicle exocytosis and fusion pore kinetics: implications for Down syndrome and Alzheimer's disease. Hum. Mol. Genet. 17, 1020-1030 https://doi.org/10.1093/hmg/ddm374
  86. Ma, H., Xiong, H., Liu, T., Zhang, L., Godzik, A. and Zhang, Z. (2004) Aggregate formation and synaptic abnormality induced by DSCR1. J. Neurochem. 88, 1485-1496 https://doi.org/10.1046/j.1471-4159.2003.02294.x
  87. Lee, E. J., Lee, J. Y., Seo, S. R. and Chung, K. C. (2007) Overexpression of DSCR1 blocks zinc-induced neuronal cell death through the formation of nuclear aggregates. Mol. Cell Neurosci. 35, 585-595 https://doi.org/10.1016/j.mcn.2007.05.003
  88. Ermak, G., Morgan, T. E. and Davies, K. J. (2001) Chronic overexpression of the calcineurin inhibitory gene DSCR1 (Adapt78) is associated with Alzheimer's disease. J. Biol. Chem. 276, 38787-38794 https://doi.org/10.1074/jbc.M102829200
  89. Cook, C. N., Hejna, M. J., Magnuson, D. J. and Lee, J. M. (2005) Expression of calcipressin1, an inhibitor of the phosphatase calcineurin, is altered with aging and Alzheimer's disease. J. Alzheimers Dis. 8, 63-73 https://doi.org/10.3233/JAD-2005-8108
  90. Poppek, D., Keck, S., Ermak, G., Jung, T., Stolzing, A., Ullrich, O., Davies, K. J. and Grune, T. (2006) Phosphorylation inhibits turnover of the tau protein by the proteasome: influence of RCAN1 and oxidative stress. Biochem. J. 400, 511-520 https://doi.org/10.1042/BJ20060463
  91. Kluetzman, K. S., Perez, A. V. and Crawford, D. R. (2005) DSCR1 (ADAPT78) lethality: evidence for a protective effect of trisomy 21 genes? Biochem. Biophys. Res. Commun. 337, 595-601 https://doi.org/10.1016/j.bbrc.2005.09.069
  92. Rothermel, B. A., McKinsey, T. A., Vega, R. B., Nicol, R. L., Mammen, P., Yang, J., Antos, C. L., Shelton, J. M., Bassel-Duby, R., Olson, E. N. and Williams, R. S. (2001) Myocyte-enriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. Proc. Natl. Acad. Sci. U.S.A. 98, 3328-3333 https://doi.org/10.1073/pnas.041614798
  93. Hesser, B. A., Liang, X. H., Camenisch, G., Yang, S., Lewin, D. A., Scheller, R., Ferrara, N. and Gerber, H. P. (2004) Down syndrome critical region protein 1 (DSCR1), a novel VEGF target gene that regulates expression of inflammatory markers on activated endothelial cells. Blood 104, 149-158 https://doi.org/10.1182/blood-2004-01-0273
  94. Yao, Y. G. and Duh, E. J. (2004) VEGF selectively induces Down syndrome critical region 1 gene expression in endothelial cells: a mechanism for feedback regulation of angiogenesis? Biochem. Biophys. Res. Commun. 321, 648-656 https://doi.org/10.1016/j.bbrc.2004.06.176
  95. Iizuka, M., Abe, M., Shiiba, K., Sasaki, I. and Sato, Y. (2004) Down syndrome candidate region 1,a downstream target of VEGF, participates in endothelial cell migration and angiogenesis. J. Vasc. Res. 41, 334-344 https://doi.org/10.1159/000079832
  96. Ryeom, S., Baek, K. H., Rioth, M. J., Lynch, R. C., Zaslavsky, A., Birsner, A., Yoon, S. S. and McKeon, F. (2008) Targeted deletion of the calcineurin inhibitor DSCR1 suppresses tumor growth. Cancer Cell 13, 420-431 https://doi.org/10.1016/j.ccr.2008.02.018
  97. Bain, J., McLauchlan, H., Elliott, M. and Cohen, P. (2003) The specificities of protein kinase inhibitors: an update. Biochem. J. 371, 199-204 https://doi.org/10.1042/BJ20021535
  98. Bain, J., Plater, L., Elliott, M., Shpiro, N., Hastie, C. J., McLauchlan, H., Klevernic, I., Arthur, J. S. C., Alessi, D. R. and Cohen, P. (2007) The selectivity of protein kinase inhibitors: a further update. Biochem. J. 408, 297-315 https://doi.org/10.1042/BJ20070797
  99. Lin, H. Y., Michtalik, H. J., Zhang, S., Andersen, T. T., Van Riper, D. A., Davies, K. K., Ermak, G., Petti, L. M., Nachod, S., Narayan, A. V., Bhatt, N. and Crawford, D. R. (2003) Oxidative and calcium stress regulate DSCR1 (Adapt78/MCIP1) protein. Free Radic. Biol. Med. 35, 528-539 https://doi.org/10.1016/S0891-5849(03)00358-7

Cited by

  1. Behavioral Characterization of a Mouse Model Overexpressing DSCR1/ RCAN1 vol.6, pp.2, 2011, https://doi.org/10.1371/journal.pone.0017010
  2. Leucine-Rich Repeat Kinase 2 (LRRK2) Stimulates IL-1β-Mediated Inflammatory Signaling through Phosphorylation of RCAN1 vol.11, 2017, https://doi.org/10.3389/fncel.2017.00125
  3. The Vertebrate RCAN Gene Family: Novel Insights into Evolution, Structure and Regulation vol.9, pp.1, 2014, https://doi.org/10.1371/journal.pone.0085539
  4. Histone Deacetylase 3 Promotes RCAN1 Stability and Nuclear Translocation vol.9, pp.8, 2014, https://doi.org/10.1371/journal.pone.0105416
  5. Ubiquitin-specific protease 22 (USP22) positively regulates RCAN1 protein levels through RCAN1 de-ubiquitination vol.230, pp.7, 2015, https://doi.org/10.1002/jcp.24917
  6. Effects of embryonic cyclosporine exposures on brain development and behavior vol.282, 2015, https://doi.org/10.1016/j.bbr.2015.01.006
  7. Molecular genetic analysis of Down syndrome vol.126, pp.1, 2009, https://doi.org/10.1007/s00439-009-0696-8
  8. α-Tocopherol suppresses lipid peroxidation and behavioral and cognitive impairments in the Ts65Dn mouse model of Down syndrome vol.50, pp.12, 2011, https://doi.org/10.1016/j.freeradbiomed.2011.03.023
  9. The transcription factor STAT2 enhances proteasomal degradation of RCAN1 through the ubiquitin E3 ligase FBW7 vol.420, pp.2, 2012, https://doi.org/10.1016/j.bbrc.2012.03.007
  10. Development of DANDYs, New 3,5-Diaryl-7-azaindoles Demonstrating Potent DYRK1A Kinase Inhibitory Activity vol.56, pp.23, 2013, https://doi.org/10.1021/jm401049v
  11. Dyrk1A Phosphorylates p53 and Inhibits Proliferation of Embryonic Neuronal Cells vol.285, pp.41, 2010, https://doi.org/10.1074/jbc.M110.147520
  12. Recent Advances in the Design, Synthesis, and Biological Evaluation of Selective DYRK1A Inhibitors: A New Avenue for a Disease Modifying Treatment of Alzheimer’s? vol.3, pp.11, 2012, https://doi.org/10.1021/cn300094k
  13. Fish oil improves gene targets of Down syndrome in C57BL and BALB/c mice vol.35, pp.5, 2015, https://doi.org/10.1016/j.nutres.2015.02.007
  14. Commonality in Down and fetal alcohol syndromes vol.97, pp.4, 2013, https://doi.org/10.1002/bdra.23129
  15. A Pilot Study Examining Associations between DYRK1A and a-Synuclein Dementias vol.10, pp.1-4, 2012, https://doi.org/10.1159/000334759
  16. New Perspectives of Dyrk1A Role in Neurogenesis and Neuropathologic Features of Down Syndrome vol.22, pp.4, 2013, https://doi.org/10.5607/en.2013.22.4.244
  17. Mitochondrial dysfunction and Down's syndrome: Is there a role for coenzyme Q10? vol.37, pp.5, 2011, https://doi.org/10.1002/biof.184
  18. (-)-epigallocatechin-3-gallate increases cell proliferation and neuroblasts in the subgranular zone of the dentate gyrus in adult mice 2009, https://doi.org/10.1002/ptr.3083
  19. Marathon of eponyms: 4 Down syndrome vol.15, pp.6, 2009, https://doi.org/10.1111/j.1601-0825.2009.01536.x
  20. A cluster of protein kinases and phosphatases modulated in fetal Down syndrome (trisomy 21) brain vol.47, pp.6, 2015, https://doi.org/10.1007/s00726-015-1941-1
  21. Effects of sarah/nebula knockdown on Aβ42-induced phenotypes during Drosophila development vol.38, pp.5, 2016, https://doi.org/10.1007/s13258-016-0407-5
  22. The CCAAT/Enhancer Binding Protein β (C/EBPβ) Cooperates with NFAT to Control Expression of the Calcineurin Regulatory ProteinRCAN1–4 vol.285, pp.22, 2010, https://doi.org/10.1074/jbc.M109.098236
  23. Repertoire of Protein Kinases Encoded in the Genome ofTakifugu rubripes vol.2012, 2012, https://doi.org/10.1155/2012/258284
  24. Leucettines, a Class of Potent Inhibitors of cdc2-Like Kinases and Dual Specificity, Tyrosine Phosphorylation Regulated Kinases Derived from the Marine Sponge Leucettamine B: Modulation of Alternative Pre-RNA Splicing vol.54, pp.12, 2011, https://doi.org/10.1021/jm200274d
  25. Association of DYRK1A polymorphisms with sporadic Parkinson’s disease in Chinese Han population vol.632, 2016, https://doi.org/10.1016/j.neulet.2016.08.022
  26. Subcellular distribution of cyclin-dependent kinase-like 5 (CDKL5) is regulated through phosphorylation by dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) vol.482, pp.2, 2017, https://doi.org/10.1016/j.bbrc.2016.11.048
  27. Increased Lung Expression of Anti-Angiogenic Factors in Down Syndrome: Potential Role in Abnormal Lung Vascular Growth and the Risk for Pulmonary Hypertension vol.11, pp.8, 2016, https://doi.org/10.1371/journal.pone.0159005
  28. Activity-dependent facilitation of Synaptojanin and synaptic vesicle recycling by the Minibrain kinase vol.5, 2014, https://doi.org/10.1038/ncomms5246
  29. Regulation of non-coding RNA networks in the nervous system—What's the REST of the story? vol.466, pp.2, 2009, https://doi.org/10.1016/j.neulet.2009.07.093
  30. NGF Upregulates the Plasminogen Activation Inhibitor-1 in Neurons via the Calcineurin/NFAT Pathway and the Down Syndrome-Related Proteins DYRK1A and RCAN1 Attenuate This Effect vol.8, pp.6, 2013, https://doi.org/10.1371/journal.pone.0067470
  31. DYRK1A inhibition as potential treatment for Alzheimer’s disease vol.8, pp.6, 2016, https://doi.org/10.4155/fmc-2016-0013
  32. Enhanced expression of DYRK1A in cardiomyocytes inhibits acute NFAT activation but does not prevent hypertrophy in vivo vol.90, pp.3, 2011, https://doi.org/10.1093/cvr/cvr023
  33. Regulation of RCAN1 Protein Activity by Dyrk1A Protein-mediated Phosphorylation vol.286, pp.46, 2011, https://doi.org/10.1074/jbc.M111.253971
  34. Decreased cell proliferation and higher oxidative stress in fibroblasts from Down Syndrome fetuses. Preliminary study vol.1842, pp.1, 2014, https://doi.org/10.1016/j.bbadis.2013.10.014
  35. Down syndrome candidate region-1 protein interacts with Tollip and positively modulates interleukin-1 receptor-mediated signaling vol.1790, pp.12, 2009, https://doi.org/10.1016/j.bbagen.2009.08.005
  36. The Role of GSK3 in Presynaptic Function vol.2011, 2011, https://doi.org/10.4061/2011/263673
  37. A novel binding protein of single-minded 2: the mitotic arrest-deficient protein MAD2B vol.13, pp.3, 2012, https://doi.org/10.1007/s10048-012-0333-x
  38. Genotype-phenotype correlation for congenital heart disease in Down syndrome through analysis of partial trisomy 21 cases 2017, https://doi.org/10.1016/j.ygeno.2017.06.004
  39. LPS-Induced Inflammation Abolishes the Effect of DYRK1A on IkB Stability in the Brain of Mice pp.1559-1182, 2019, https://doi.org/10.1007/s12035-018-1113-x