Hydrate Production Performance Analysis with Multi-Well, Plate-Type Apparatus Using Depressurization and Thermal Methods

다중공 평판형 장비를 이용한 감압법과 열자극법에 의한 하이드레이트 가스 생산성 분석

  • Lee, Youngsoo (Department of Geoenvironmental Eng., Hanyang University) ;
  • Wang, Jihoon (Department of Geoenvironmental Eng., Hanyang University) ;
  • Park, Jungkyoon (Department of Geoenvironmental Eng., Hanyang University) ;
  • Sung, Wonmo (Department of Geoenvironmental Eng., Hanyang University)
  • 이영수 (한양대학교 공과대학 지구환경시스템공학과) ;
  • 왕지훈 (한양대학교 공과대학 지구환경시스템공학과) ;
  • 박정균 (한양대학교 공과대학 지구환경시스템공학과) ;
  • 성원모 (한양대학교 공과대학 지구환경시스템공학과)
  • Received : 2008.12.19
  • Accepted : 2009.01.18
  • Published : 2009.02.28

Abstract

This paper presents the experimental study to analyze the pressure and production behavior using depressurization and thermal methods in order to evaluate the hydrate productivity in the 2-D multi-well, plate-type apparatus which has 80 md permeability and 30% hydrate saturation. Injecting methane gas through multi-well allowed to set up the highly saturated hydrate system and combining two different sorts of sands made possible to build up the low permeability system. In this system, both depressurization and electric stimulation methods were applied. When operating pressure was low, according to the depressurization experiments results, the gas recovery was high, however strong pulses which appeared at initial stage of production would damage the operation system. Moreover, cases that hydrate reformed have occurred by endothermic reaction. We have conducted experiments four and six times for the depressurization magnitudes of 140 psi and 320 psi, respectively, to analyze production behavior for the method more in detail. For the cases that the depressurization magnitude was set as 140 psi, the unstable period appears in the results, but stabilized soon. In the experiment results for 320 psi the discontinuous and intermittent behavior has been observed. Thermal stimulation experiments was conducted with depressurizing 80 psi which is the case that shows stable behavior and low recovery. In the results, the gas recovery was high and the energy efficiency was low for long stimulating time. The energy efficiency and gas recovery increased for the soaking time of 1 minute after 2 minute-preheating. In the cases of which the soaking time exceeds 1 minute, energy loss by long soaking time caused low gas recovery and poor energy efficiency.

본 연구에서는 투과도 80 md, 하이드레이트 포화도 30%의 다중공 평판형 시스템에서 열자극 감압법에 의한 생산실험을 수행하여 하이드레이트의 해리양상 및 생산효율을 관측 및 분석하였다. 감압의 크기에 따른 실험결과에서, 운영 압력을 낮게 설정하면 높은 가스회수율을 얻을 수 있지만 생산초기 나타나는 강한 펄스가 생산전 운영에 무리를 줄 수 있다고 판단되었다. 또한 흡열반응에 의한 하이드레이트 재형성으로 오히려 회수율이 감소하는 경우가 발생하였다. 감압법 적용시의 생산거동을 더 상세히 분석하기 위해, 감압크기 140 psi와 320 psi에 대해 각각 4, 6회의 반복실험을 진행하였다. 그 결과, 140 psi로 감압크기를 설정한 경우, 생산초기에 불안정한 거동이 나타나지만, 빠르게 안정화됨을 알 수 있었다. 320 psi의 실험결과에서 불연속적이며 간헐적인 생산거동을 확인할 수 있었다. 열자극 실험은 안정적인 생산거동을 보이며 회수율이 비교적 낮아 열자극의 효과를 잘 관찰할 수 있는 압력차 80 psi를 적정운영 압력으로 설정하여 수행하였다. 열자극감압 혼용기법의 결과로부터 열자극시간이 증가할수록 가스회수율은 증가하였지만, 반면 에너지효율은 오히려 감소하는 것으로 나타났다. 열을 2분간 가한 후 열흡수 시간을 1분으로 설정한 경우 본 시스템에서는 회수율이 상승하였으며, 에너지효율 또한 증가되는 결과를 얻었다. 하지만, 열흡수 시간이 1분 이상일 경우 오히려 더 낮은 회수율과 에너지효율을 보였는데 이는 긴 열흡수 시간으로 인한 열손실에 기인한 것으로 판단된다.

Keywords

Acknowledgement

Supported by : 한국지질자원연구원

References

  1. Yousif, M. H., Li, P. M., Selim, M. S. and Sloan, E. D., "Depressurization of Natural Gas Hydrate in Berea Sandstone Cores," Journal of Inclusion Phenomena & Molecular Recognition Chemistry, 8(1-2), 71(1990) https://doi.org/10.1007/BF01131289
  2. Yousif, M. H., Abass, H., Selim, M. S. and Sloan, E. D., 'Experimental and Theoretical Investigation of Methane-Gas- Hydrate Dissociation in Porous Media,' paper SPE 18320, Journal of SPE Reservoir Engineering, 6(1), 69-76(1991) https://doi.org/10.2118/18320-PA
  3. Uchida, T., Ebinuma, T. and Ishizaki, T., "Dissociation Condition Measurements of Methane Hydrate in Confined Small Pores of Porous Glass," Journal of Physical Chemistry B, 103(18), 3659-3662(1999) https://doi.org/10.1021/jp984559l
  4. Uchida, T., Ebinuma, T., Takeya, S., Nagao, J. and Narita, H., "Effects of Pore Sizes on Dissociation Temperatures and Pressures of Methane, Carbon Dioxide, and Propane Hydrates in Porous Media," Journal of Physical Chemistry. B, 106(4), 820-826(2002) https://doi.org/10.1021/jp012823w
  5. Sung, W. M. and Kang, H., 'Experimental Investigation of Production Behaviors of Methane Hydrate Saturated in Porous Rock,' Energy Sources, 25(8), 845-856(2003) https://doi.org/10.1080/00908310390207873
  6. Kneafsey, T. J., Tomutsa, L., Taylor, C. E., Gupta, A., Moridis, G., Freifeld, B. and Seol, Y., "Methane Hydrate Formation and Dissociation in a Partially Saturated Sand," Journal of Petroleum Science and Engineering, 56(1-3), 108-126(2004) https://doi.org/10.1016/j.petrol.2006.02.002
  7. Sakamoto, Y., Komai, T., Kawamura, T., Minagawa, H., Tenma, N. and Yamaguchi, T., 'Laboratory-scale Experiment of Methane Hydrate Dissociation by Hot-water Injection and Numerical Analysis for Permeability Estimation in Reservoir,' International Journal of Offshore and Polar Engineers, 17(1), 47-56(2007)
  8. Sakamoto, Y., Komai, T., Kawabe, Y., Tenma, N. and Yamaguchi, T., 'Gas Hydrate Extraction from Marine Sediments by Heat Stimulation Method,' 14th International Offshore and Polar Engineering Conference held in Toulon, France, 23-28 May, 52-55(2004)
  9. Sloan, E. D., Clathrate Hydrates of Natural Gases, Marcel Dekker, Inc., New York(1998)
  10. Islam, M. R., 'A New Recovery Technique for Gas Production From Alaskan Gas Hydrates,' paper 22924 presented at the 66th Annual Technical Conference and Exhibition held in Dallas, TX, 6-9 October(1991)