DOI QR코드

DOI QR Code

Functional properties of the thermostable mutL from Thermotoga maritima

  • Kim, Tae-Gyun (Department of Chemistry, Pohang University of Science and Technology) ;
  • Heo, Seong-Dal (Department of Chemistry, Pohang University of Science and Technology) ;
  • Ku, Ja-Kang (Department of Chemistry, Pohang University of Science and Technology) ;
  • Ban, Chang-Ill (Department of Chemistry, Pohang University of Science and Technology)
  • Published : 2009.01.31

Abstract

The methyl-directed mismatch repair (MMR) mechanism has been extensively studied in vitro and in vivo, but one of the difficulties in determining the biological relationships between the MMR-related proteins is the tendency of MutL to self-aggregate. The properties of a stable MutL homologue were investigated using a thermostable MutL (TmL) from Thermotoga maritima MSB8 and whose size exclusion chromatographic and crosslinking analyses were compatible with a dimeric form of TmL. TmL underwent conformational changes in the presence of nucleotides and single-stranded DNA (ssDNA) with ATP binding not requiring ssDNA binding activity of TmL, while ADPnP-stimulated TmL showed a high ssDNA binding affinity. Finally, TmL interacted with the T. maritima MutS (TmS), increasing the affinity of TmS to mismatched DNA base pairs and suggesting that the role of TmL in the formation of a mismatched DNA-TmS complex may be a pivotal observation for the study of the initial MMR system.

Keywords

References

  1. Lyer, R. R., Pluciennik, A., Burdett, V. and Modrich, P. L. (2006) DNA Mismatch Repair: functions and mechanisms. Chem. Rev. 106, 302-323 https://doi.org/10.1021/cr0404794
  2. Yang, W., Junop, M., Ban, C., Obmolova, G. and Hsieh, P. (2001) DNA Mismatch Repair: from structure to mechanism. Cold Spring Harbor Symposia on Quantitative Biology 65, 225-232 https://doi.org/10.1101/sqb.2000.65.225
  3. Yang, W. (2000) Structure and function of mismatch repair proteins. Mutation Research 460, 245-256 https://doi.org/10.1016/S0921-8777(00)00030-6
  4. Junop, M., Yang, W., Funchain, P., Clendenin, W. and Miller, J. (2003) In vitro and in vivo studies of MutS, MutL and MutH mutants: correlation of mismatch repair and DNA recombination. DNA repair 2, 387-405 https://doi.org/10.1016/S1568-7864(02)00245-8
  5. Jun, S., Kim, T. and Ban, C. (2006) DNA Mismatch Repair System: Classical and Fresh Roles. FEBS Journal (European journal of biochemistry) 273, 1609-1619
  6. Jascur, T. and Boland, R. (2006) Structure and function of the components of the human DNA mismatch repair system. Int. J. Cancer 119, 2030-2035 https://doi.org/10.1002/ijc.22023
  7. Spampinato, C. and Modrich, P. L. (2000) The MutL ATPase is required for mismatch repair. J. Biol. Chem. 275, 9863-9869 https://doi.org/10.1074/jbc.275.13.9863
  8. Bende, S. M. and Grafstrom, R. H. (1991) The DNA binding properties of the MutL protein isolate from Escherichia coli. Nucleic Acids Res. 19, 1549-1555 https://doi.org/10.1093/nar/19.7.1549
  9. Mechanic, L. E., Frankel, B. A. and Matson, S. W. (2000) Escherichia coli MutL Loads DNA Helicase II onto DNA. J. Biol. Chem. 275, 38337-38346 https://doi.org/10.1074/jbc.M006268200
  10. Robertson, A., Pattishall, S. R. and Matson, S. W. (2006) The DNA binding activity of mutl is required for methyl-directed mismatch repair in Escherichia coli. J. Biol. Chem. 281, 8399-8408 https://doi.org/10.1074/jbc.M509184200
  11. Ban, C. and Yang, W. (1998) Crystal structure of ATPase activity of MutL: implication for DNA repair and mutagenesis. Cell 95, 541-552 https://doi.org/10.1016/S0092-8674(00)81621-9
  12. Ban, C., Junop, M. and Yang, W. (1999) Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell 97, 85-97 https://doi.org/10.1016/S0092-8674(00)80717-5
  13. Giron-Monzon, L., Manelyte, L., Ahrends, R., Kirsch, D., Spengler, B. and Friedhoff, P. (2004) Mapping protein- protein interactions between MutL and MutH by crosslinking. J. Biol. Chem. 279, 49338-49345 https://doi.org/10.1074/jbc.M409307200
  14. Bollag, D. M., Rozycki, M. D. and Edelstein, S. J. (1996) Protein Methods, 2nd ed., WILEY-LISS, New York, USA
  15. Drotschmann, K., Aronshtam, A., Fritz, H-J. and Marinus, M. G. (1998) The Escherichia coli MutL protein stimulates binding of Vsr and MutS to heteroduplex DNA. Nucleic Acids Res. 26, 948-953 https://doi.org/10.1093/nar/26.4.948
  16. Heo, S. D., Cho, M. S., Ku, J. K. and Ban C. (2007) Steady-state ATPase activity of E. coli MutS modulated by its dissociation form heteroduplex DNA. Biochem. Biophy. Res. Comm. 364, 264-269 https://doi.org/10.1016/j.bbrc.2007.09.130
  17. Takashi, R. and Putnam, S. (1979) A fluorimetric method for continuously assaying ATPase: application to small specimens of glycerol-extracted muscle fibers. Anal. Biochem. 92, 375-382 https://doi.org/10.1016/0003-2697(79)90674-2
  18. Dubaele, S., Martin, C., Bohn, J. and Chene, P. (2007) Biochemical study of recombinant PcrA from staphylococcus aureus for the development of screening assays. J. Biochem. Mol. Biol. 40, 7-14 https://doi.org/10.5483/BMBRep.2007.40.1.007

Cited by

  1. Characterization of Multi-Functional Properties and Conformational Analysis of MutS2 from Thermotoga maritima MSB8 vol.7, pp.4, 2012, https://doi.org/10.1371/journal.pone.0034529
  2. Analysis of the Interaction Interfaces of the N-Terminal Domain from Pseudomonas aeruginosa MutL vol.8, pp.7, 2013, https://doi.org/10.1371/journal.pone.0069907
  3. DNA Mismatch Repair in Eukaryotes and Bacteria vol.2010, 2010, https://doi.org/10.4061/2010/260512