DOI QR코드

DOI QR Code

Moderately thermostable phage Φ11 Cro repressor has novel DNA-binding capacity and physicochemical properties

  • Published : 2009.03.31

Abstract

The temperate Staphylococcus aureus phage ${\Phi}11$ harbors cI and cro repressor genes similar to those of lambdoid phages. Using extremely pure ${\Phi}11$ Cro (the product of the ${\Phi}11$ cro gene) we demonstrated that this protein possesses a single domain structure, forms dimers in solution at micromolar concentrations and maintains a largely $\alpha$-helical structure even at $45^{\circ}C$. ${\Phi}11$ Cro was sensitive to thermolysin at temperatures ranging from $55-75^{\circ}C$ and began to aggregate at ${\sim}63^{\circ}C$, suggesting that the protein is moderately thermostable. Of the three homologous 15-bp operators (O1, O2, and O3) in the ${\Phi}11$ cI-cro intergenic region, ${\Phi}11$ Cro only binds efficiently to O3, which is located upstream of the cI gene. Our comparative analyses indicate that the DNA binding capacity, secondary structure and dimerization efficiency of thermostable ${\Phi}11$ Cro are distinct from those of P22 Cro and $\lambda$ Cro, the best characterized representatives of the two structurally different Cro families.

Keywords

References

  1. Mondragon, A., Wolberger, C. and Harrison, S. C. (1989) Structure of phage 434 Cro protein at 2.35 $\AA$ resolution. J. Mol. Biol. 205, 179-188 https://doi.org/10.1016/0022-2836(89)90374-4
  2. Ohlendorf, D. H., Tronrud, D. E. and Matthews, B. W. (1998) Refined structure of Cro repressor protein from bacteriophage $\lambda$ suggests both flexibility and plasticity. J. Mol. Biol. 280,129-136 https://doi.org/10.1006/jmbi.1998.1849
  3. LeFevre, K. R. and Cordes, M. H. J. (2003) Retroevolution of $\lambda$ Cro toward a stable monomer. Proc. Natl. Acad. Sci. U.S.A. 100, 2345-2350 https://doi.org/10.1073/pnas.0537925100
  4. Newlove, T., Konieczka, J. H. and Cordes, M. H. (2004) Secondary structure switching in Cro protein evolution. Structure. 12, 569-581 https://doi.org/10.1016/j.str.2004.02.024
  5. Dubrava, M. S., Ingram, W. M., Roberts, S. A., Weichsel, A., Montfort, W. R. and Cordes, M. H. (2008) N15 Cro and $\lambda$ Cro: orthologous DNA-binding domains with completely different but equally effective homodimer interfaces. Protein Sci. 17, 803-812 https://doi.org/10.1110/ps.073330808
  6. Roessler, C. G., Hall, B. M., Anderson, W. J., Ingram, W. M., Roberts, S. A., Montfort, W. R. and Cordes, M. H. (2008) Transitive homology-guided structural studies lead to discovery of Cro proteins with 40% sequence identity but different folds. Proc. Natl. Acad. Sci. U.S.A. 105, 2343-2348 https://doi.org/10.1073/pnas.0711589105
  7. Gussin, G. N., Sauer, R. T., Pabo, C. R. and Johnson, A. D. (1983) Repressor and Cro protein: Structure, function, and role in lysogenization. In Lambda II (Hendrix, R.W., Roberts, J. W., Stahl, F. W., Weisberg, R.A., eds.) pp. 93- 121, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  8. Iandolo, J. J., Worrell, V., Groicher, K. H., Qian, Y., Tian, R., Kenton, S., Dorman, A., Ji, H., Lin, S., Loh, P., Qi, S., Zhu, H. and Roe, B. A. (2002) Comparative analysis of the genomes of the temperate bacteriophages $\phi$11, $\phi$12 and $\phi$13 of Staphylococcus aureus 8325. Gene. 289, 109-118 https://doi.org/10.1016/S0378-1119(02)00481-X
  9. Das, M., Ganguly, T., Chattoraj, P., Chanda, P. K., Bandhu, A., Lee, C. Y. and Sau, S. (2007) Purification and characterization of repressor of temperate S. aureus phage phi11. J. Biochem. Mol. Biol. 40, 740-748 https://doi.org/10.5483/BMBRep.2007.40.5.740
  10. Kenny, J. G., Leach, S., de la Hoz, A. B., Venema, G., Kok, J., Fitzgerald, G. F., Nauta, A., Alonso, J. C. and van Sinderen, D. (2006) Characterization of the lytic-lysogenic switch of the lactococcal bacteriophage Tuc2009. Virology. 347, 434-446 https://doi.org/10.1016/j.virol.2005.11.041
  11. Kakikawa, M., Ohkubo, S., Sakate, T., Sayama, M., Taketo, A. and Kodaira, K. (2000) Purification and DNA-binding properties of the cro-type regulatory repressor protein cng encoded by the Lactobacillus plantarum phage $\phi$g1e. Gene. 249, 161-169 https://doi.org/10.1016/S0378-1119(00)00146-3
  12. Ladero, V., Garcia, P., Alonso, J. C. and Suarez, J. E. (2002) Interaction of the Cro repressor with the lysis/lysogeny switch of the Lactobacillus casei temperate bacteriophage A2. J. Gen. Virol. 83, 2891-2895
  13. Sumby, P. and Waldor, M. K. (2003) Transcription of the toxin genes present within the Staphylococcal phage phiSa3ms is intimately linked with the phage's life cycle. J. Bacteriol. 185, 6841-6851 https://doi.org/10.1128/JB.185.23.6841-6851.2003
  14. Wolberger, C., Dong, Y. C., Ptashne, M. and Harrison, S. C. (1988) Structure of a phage 434 Cro/DNA complex. Nature. 335, 789-795 https://doi.org/10.1038/335789a0
  15. Poteete, A. R., Hehir, K. and Sauer, R. T. (1986) Bacteriophage P22 Cro protein: sequence, purification, and properties. Biochemistry. 25, 251-256
  16. Bushman, F. D. (1993) The bacteriophage 434 right operator. Roles of OR1, OR2 and OR3. J. Mol. Biol. 230, 28-40 https://doi.org/10.1006/jmbi.1993.1123
  17. Lee, C.Y. and Iandolo, J. J. (1988) Structural analysis of staphylococcal bacteriophage $\phi$11 attachment sites. J. Bacteriol. 170, 2409-2411
  18. Sambrook, J. and Russell, D. W. (2001) In Molecular Cloning: A Laboratory Manual. $3^{rd}$ ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor , New York
  19. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. (1998) In Current Protocols in Molecular Biology, Ch 10, Massachusetts General Hospital, Harvard Medical School, John Wiley & Sons, Inc., U.S.A
  20. Mandal, P., Chakraborty, P., Sau, S. and Mandal, N. C. (2006) Purification and characterization of a deoxyriboendonuclease from Mycobacterium smegmatis. J. Biochem. Mol. Biol. 39, 140-144 https://doi.org/10.5483/BMBRep.2006.39.2.140
  21. Ganguly, T., Bandhu, A., Chattoraj, P., Chanda, P. K., Das, M., Mandal, N.C. and Sau, S. (2007) Repressor of temperate mycobacteriophage L1 harbors a stable C-terminal domain and binds to different asymmetric operator DNAs with variable affinity. Virol. J. 4, 64 https://doi.org/10.1186/1743-422X-4-64
  22. Hecht, M. H., Nelson, H. C. and Sauer, R. T. (1983) Mutations in lambda repressor's amino-terminal domain: implications for protein stability and DNA binding. Proc. Natl. Acad. Sci. U.S.A. 80, 2676-2680 https://doi.org/10.1073/pnas.80.9.2676
  23. Bandhu, A., Ganguly, T., Chanda, P. K., Das, M. and Sau S (2009) $Na^+$ and $Mg^{2+}$ have antagonistic effects on the structure, function and stability of repressor of temperate mycobacteriophage L1. BMB Rep. (in press)
  24. Chanda, P. K., Mondal, R., Sau, K. and S. Sau (2008) Antibiotics, arsenate and $H_2O_2$ induce the promoter of Staphylococcus aureus cspC gene more strongly than cold. J. Basic Microbiol. 48, 1-7 https://doi.org/10.1002/jobm.200890001
  25. Koudelka, A. P, Hufnagel, L. A. and Koudelka, G. B. (2004) Purification and characterization of the repressor of the shiga toxin-encoding bacteriophage 933W: DNA binding, gene regulation, and autocleavage. J. Bacteriol. 186, 7659-7669 https://doi.org/10.1128/JB.186.22.7659-7669.2004
  26. Maxam, A. M. and Gilbert, W. (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65, 499-560 https://doi.org/10.1016/S0076-6879(80)65059-9

Cited by

  1. Physicochemical properties and distinct DNA binding capacity of the repressor of temperate Staphylococcus aureus phage φ11 vol.276, pp.7, 2009, https://doi.org/10.1111/j.1742-4658.2009.06924.x
  2. Insights into aureocin A70 regulation: participation of regulator AurR, alternative transcription factor σB and phage ϕ11 regulator cI vol.167, pp.2, 2016, https://doi.org/10.1016/j.resmic.2015.10.004
  3. Changes in the Functional Activity of Phi11 Cro Protein is Mediated by Various Ions vol.35, pp.6, 2016, https://doi.org/10.1007/s10930-016-9684-8
  4. The N-Terminal Domain of the Repressor of Staphylococcus aureus Phage Φ11 Possesses an Unusual Dimerization Ability and DNA Binding Affinity vol.9, pp.4, 2014, https://doi.org/10.1371/journal.pone.0095012
  5. Characterization of an unusual cold shock protein from Staphylococcus aureus vol.50, pp.6, 2010, https://doi.org/10.1002/jobm.200900264
  6. Identification and characterization of a CI binding operator at a distant location in the temperate staphylococcal phage ф11 vol.364, pp.20, 2017, https://doi.org/10.1093/femsle/fnx201