Electrochemical Metallization Processes for Copper and Silver Metal Interconnection

구리 및 은 금속 배선을 위한 전기화학적 공정

  • Kwon, Oh Joong (Department of Mechanical Engineering, University of Incheon) ;
  • Cho, Sung Ki (School of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Jae Jeong (School of Chemical and Biological Engineering, Seoul National University)
  • 권오중 (인천대학교 기계공학과) ;
  • 조성기 (서울대학교 화학생물공학부) ;
  • 김재정 (서울대학교 화학생물공학부)
  • Received : 2009.02.06
  • Accepted : 2009.02.27
  • Published : 2009.04.30

Abstract

The Cu thin film material and process, which have been already used for metallization of CMOS(Complementary Metal Oxide Semiconductor), has been highlighted as the Cu metallization is introduced to the metallization process for giga - level memory devices. The recent progresses in the development of key elements in electrochemical processes like surface pretreatment or electrolyte composition are summarized in the paper, because the semiconductor metallization by electrochemical processes such as electrodeposition and electroless deposition controls the thickness of Cu film in a few nm scales. The technologies in electrodeposition and electroless deposition are described in the viewpoint of process compatibility between copper electrodeposition and damascene process, because a Cu metal line is fabricated from the Cu thin film. Silver metallization, which may be expected to be the next generation metallization material due to its lowest resistivity, is also introduced with its electrochemical fabrication methods.

초고속 연산용 CMOS(complementary Metal Oxide Semiconductor) 배선재료로 사용되고 있는 구리(Cu)가, 기가급 메모리 소자용 금속 배선 물질에도 사용이 시작되면서 구리 박막에 대한 재료 및 공정이 새로운 조명을 받고 있다. 반도체 금속 배선에 사용하는 수 nm 두께의 구리 박막의 형성에 전해도금(electrodeposition)과 무전해 도금(electroless deposition) 같은 전기화학적 방법을 이용하게 되어서 표면 처리, 전해액 조성과 같은 중요한 요소에 대한 최신 연구 동향을 요약하였다. 구리 박막에서 구리 배선을 제작하여야 하므로 새로운 패턴 기술인 상감기법이 도입되어, 구리도금과 상감기법과의 공정 일치성 관점에서 전해도금과 무전해 도금의 요소 기술에 대해 기술하였다. 구리보다 비저항이 낮아 차세대 소자용 배선에 있어서 적용이 예상되는 은(Ag)을 전기화학적 방법으로 금속 배선에 적용하는 최신 연구에 대하여도 소개하였다.

Keywords

Acknowledgement

Supported by : 인천대학교

References

  1. Ryan, J. G., Geffken, R. M., Poulin, N. R. and Paraszczak, J. R., "The Evolution of Interconnection Technology at IBM," IBM J. Res. Dev., 39, 371-382(1995) https://doi.org/10.1147/rd.394.0371
  2. Murarka, S. P. and Hymes, S. W., "Copper Metallization for ULSL and Beyond", Crit. Rev. Solid State, 20, 87-124(1995) https://doi.org/10.1080/10408439508243732
  3. Manepalli, R., Stepniak, F., Bidsturp-Allen, S. A. and Kohl, P. A., "Silver Metallization for Advanced Interconnects," IEEE Trans. Adv. Packag., 22, 4-8(1999) https://doi.org/10.1109/6040.746536
  4. Alford, T. L., Zeng, Y., Nguyen, P., Chen, L. and Mayer, J. W., "Self-encapsulation Effects on The Electromigration Resistance of Silver Lines," Microelectron. Eng., 55, 389-395(2001) https://doi.org/10.1016/S0167-9317(00)00472-X
  5. Ahn, E. J. and Kim, J. J., "Additives for Superconformal Electroplating of Ag Thin Film for ULSIs," Electrochem. Solid-State Lett., 7, C118-C120(2004) https://doi.org/10.1149/1.1793811
  6. Moffat, T. P., Baker, B., Wheeler, D., Bonevich, J. E., Edelstein, M., Kelly, D. R., Gan, L., Stafford, G. R., Chen, P. J., Egelhoff, W. F. and Josell, D., "Superconformal Electrodeposition of Silver in Submicrometer Features," J. Electrochem. Soc., 149, C423-C428 (2002) https://doi.org/10.1149/1.1490357
  7. Datta, M. and Landolt, D., "Fundamental Aspects and Applications of Electrochemical Microfabrication," Electrochim. Acta, 45, 2535-2558(2000) https://doi.org/10.1016/S0013-4686(00)00350-9
  8. Paunovic, M. and Schlesinger, M., Fundamentals of Electrochemical Deposition, John Wiley & Sons Inc., New York(1998)
  9. Takahashi, K. M. and Gross, M. E., "Transport Phenomena That Control Electroplated Copper Filling of Submicron Vias and Trenches," J, Electrochem. Soc., 146, 4499-4503(1999) https://doi.org/10.1149/1.1392664
  10. Gomma, G. K. 'Effect of Azole Compounds on Corrosion of Copper in Acid Medium,' Mater. Chem. Phys., 56, 27-34(1998) https://doi.org/10.1016/S0254-0584(98)00086-8
  11. Snatos, J. R., Mattoso, L. H. C. and Motheo, A. J., "Investigation of Corrosion Protection of Steel by Polyaniline Films," Electrochem. Acta, 43, 309-313(1998) https://doi.org/10.1016/S0013-4686(97)00052-2
  12. Truman, J. E. and Shreir, L. L., Corrosion: Metal/Environment, Vol. 1, Boston(1976)
  13. Farndon, E. E., Walsh, F. C. and Campbell, S. A., "Effect of Thiourea, Benzotriazole and 4,5-Dithiaoctane-1,8-Disulphonic Acid on The Kinetics of Copper Deposition from Dilute Acid Sulphate Solutions," J. Appl. Electrochem., 25, 574-583(1995) https://doi.org/10.1007/BF00573215
  14. Sutter, E. M. M., Ammeloot, F., Pouet, M. J., Fiaud, C. and Couffignal, R., "Heterocyclic Compounds Used as Corrosion Inhibitors: Correlation between $^{13}C$ and 1H NMR Spectroscopy and Inhibition Efficiency," Corr. Sci., 41, 105-115(1999) https://doi.org/10.1016/S0010-938X(98)00099-7
  15. Brusic, V., Frisch, M. A., Eldridge, B. N., Novak, F. P., Kaufman, F. B., Rush, B. M. and Frankel, G. S., "Copper Corrosion With and Without Inhibitors," J Electrochem. Soc., 138, 2253-2259(1991) https://doi.org/10.1149/1.2085957
  16. Kim, Y. S., Kim, S.-K. and Kim, J. J., 'Co-suppression Behavior of Polyethylene Glycol and Chloride ion at Copper Electrodeposition,' Proceeding of VMIC conference, September, Santa Clara(2001)
  17. Kim, J. J., Kim, S.-K. and Kim, Y. S., "Catalytic Behavior of MPSA(3-mercapto-1-propane sulfonic acid) on Cu Electrodeposition and its Effect on Cu Film Properties for CMOS device Metallization," J Electroanal. Chem., 542, 61-66(2003) https://doi.org/10.1016/S0022-0728(02)01450-X
  18. Kim, S.-K. and Kim, J. J., "Superfilling Evolution in Cu Electrodeposition," Electrochem. Solid-State Lett., 7, C98-C100(2004) https://doi.org/10.1149/1.1777552
  19. Frank, A. and Bard, A. J., "The Decomposition of the Sulfonate Additive Sulfopropyl Sulfonate in Acid Copper Electroplating Chemistries," J. Electrochem. Soc., 150, C244-C250(2003) https://doi.org/10.1149/1.1557081
  20. Josell, D., Baker, B., Witt, C., Wheeler, D. and Moffat, T. P., "Via Filling by Electrodeposition," J. Electrochem. Soc., 149, C637-C641 (2002) https://doi.org/10.1149/1.1517583
  21. Josell, D., Wheeler, D., Huber, W. H., Bonevich, J. E. and Moffat, T. P., "A Simple Equation for Predicting Superconformal Electrodeposition in Submicrometer Trenches," J. Electrochem. Soc., 148, C767-C773(2001) https://doi.org/10.1149/1.1414287
  22. Moffat, T. P., Wheeler, D., Huber, W. H. and Josell, D., "Superconformal Electrodeposition of Copper," Electrochem. Solid-State Lett., 4, C26-C29(2001) https://doi.org/10.1149/1.1354496
  23. Moffat, T. P., Wheeler, D., Witt, C. and Josell, D., "Superconformal Electrodeposition Using Derivitized Substrates," Electrochem. Solid-State Lett., 5, C110-C112(2002) https://doi.org/10.1149/1.1521290
  24. Josell, D., Wheeler, D., Huber, W. H. and Moffat, T. P., "Superconformal Electrodeposition in Submicron Features," Phys. Rev. Lett., 87, 016102-1-016102-4(2001) https://doi.org/10.1103/PhysRevLett.87.016102
  25. West, W. C., Mayer, S. and Reid, J., "A Superfilling Model that Predicts Bump Formation," Electrochem. Solid-State Lett., 4, C50-C53 (2001) https://doi.org/10.1149/1.1375856
  26. Moffat, T. P., Wheeler, D., Edelstein, M. D. and Josell, D., "Superconformal Film Growth : Mechanism and Quantification," IBM J. Res. & Dev., 49, 19-36(2005) https://doi.org/10.1147/rd.491.0019
  27. Josell, D., Wheeler, D. and Moffat, T. P., "Superconformal Electrodepotention in Vias," Electrochem. Solid-State Lett., 5, C49-C52 (2002) https://doi.org/10.1149/1.1452485
  28. Dubin, V., Hong, K. and Baxter, N., 'Electroplating Bath Composition,' US Patent, 6,491,806(2002)
  29. Bernards, R. F., Fisher, G., Sonnenberg, W., Cerwonka, E. J. and Fisher, S., 'Additive for Acid-copper Electroplating Baths to Increase Throwing Power,' US Patent, 5,051,154(1991)
  30. Tabakovic, I., Riemer, S., Inturi, V., Jallen, P. and Thayer, A. "Organic Additives in the Electrochemical Preparation of Soft Magnetic CoNiFe Films," J. Electrochem. Soc., 147, 219-226 (2000) https://doi.org/10.1149/1.1393178
  31. Cho, S. K., Kim, S.-K. and Kim, J. J., "Supercomformal Cu Electrodeposition Using DPS," J. Electrochem. Soc., 152, C330-C333 (2005) https://doi.org/10.1149/1.1891645
  32. Hau-Riege, S. P. and Thompson, C. V., "In Situ Transmission Electron Microscope Studies of the Kinetics of Abnormal Grain Growth in Electroplated Copper Films," Appl. Phys. Lett., 76, 309-311(2000) https://doi.org/10.1063/1.125729
  33. Kim, S.-K. and Kim, J. J., 'Additive-Free Superfilling in Damascene Cu Electrodeposition Using Microcontact Printing,' Electrochem. Solid-State Lett., C101-C103(2004) https://doi.org/10.1149/1.1778932
  34. Xia, Y., Kim, E., Mrksich, M. and Whitesides, G. M., "Microcontact Printing of Alkanethiols on Copper and Its Application in Microfabrication," Chem. Mater., 8, 601-603(1996) https://doi.org/10.1021/cm950464+
  35. Xia, Y., Zhao, X.-M. and Whitesides, G. M., "Pattern Transfer: Self-Assembled Monolayers as Ultrathin Resists," Microelectron. Eng., 32, 255-268(1996) https://doi.org/10.1016/0167-9317(95)00174-3
  36. Cha, S. H., Kim, S.-S., Cho, S. K. and Kim, J. J., "Bottom-Up Filling Using Electrochemical Oxidation on Patterned Wafers," Electrochem. Solid-State Lett., 8, C170-C172(2005) https://doi.org/10.1149/1.2063248
  37. Cha, S. H., Kim, S.-S., Cho, S. K. and Kim, J. J., "Copper Bottom- Up Filling by Electroplating Without any Additives on Patterned Wafer," Electrochem. Solid-State Lett., 10, D22-D24(2007) https://doi.org/10.1149/1.2400207
  38. Ueno, K., Ritzdorf, T. and Grace, S., "Seed Layer Dependence of Room-Temperature Recrystallization in Electroplated Copper Films," J. Appl. Phys., 86, 4930-4935(1999) https://doi.org/10.1063/1.371462
  39. Hara, T., Kamijima, S. and Shimura, Y., "Electroplating of Copper Conductive Layer on The Electroless-Plating Copper Seed Layer," Electrochem. Solid-State Lett., 6, C8-C11(2003) https://doi.org/10.1149/1.1527410
  40. Kim, J. J., Kim, S.-K., Lee, C. H. and Kim, Y. S., "Investigation of Various Copper Seed Layers for Copper Electrodeposition Applicable to Ultralarge-Scale Intergration Interconnection," J. Vac. Sci. Technol. B, 21, 33-38(2003) https://doi.org/10.1116/1.1529654
  41. Webb, E., Sukamto, J., Andryushchenko, T., Danek, M., Klawuhn, E., Rozbicki, R., Alers, G., Suwwan de Felipee, T., Bhaskaran, V., Frank, A., Pfeifer, K. and Reid, J., 'Comparison of Options for Sub 0.10 Micron Generation Damascene Copper Feature Fill,' in Proceedings of the 18th VLSI Multilevel Interconnection Conference, September, Santa Clara(2001)
  42. Kim, J. J., Kim, S.-K. and Kim, Y. S., "Direct Plating of Low Resistivity Bright Cu Film onto TiN Barrier Layer Via Pd Activation," J. Electrochem. Soc., 151, C97-C101(2004) https://doi.org/10.1149/1.1633269
  43. Oskam, G., Vereecken, P. M. and Searson, P. C., "Electrochemical Deposition of Copper on n-Si/TiN," J. Electrochem. Soc., 146, 1436-1441(1999) https://doi.org/10.1149/1.1391782
  44. Han, H., Kim, J. J. and Yoon, D. Y., "Pretreatment Technique for Surface Improvement of Ru Films in Ru-Metalorganic Chemical Vapor Deposition," J. Vac. Sci. Technol. A, 22, 1120-1123(2004) https://doi.org/10.1116/1.1756876
  45. Kim, J. J., Kim, S.-K. and Kim, Y. S., "A Novel Method for Cu Electrodeposition on Indium Tin Oxide Aided by Two-Step Sn- Pd Activation," Jpn. J. Appl. Phys., Part 2 42, L1080-L1082(2003) https://doi.org/10.1143/JJAP.42.L1080
  46. Chyan, O., Arunagiri, T. and Ponnuswamy, T., "Electrodeposition of Copper Thin Film on Ruthenium," J. Electrochem. Soc., 150, C347-C350(2003) https://doi.org/10.1149/1.1565138
  47. Josell, D., Wheeler, D., Witt, C. and Moffat, T. P., "Seedless Superfill: Copper Electrodeposition in Trenches with Ruthenium Barriers," Electrochem. Solid-State Lett., 6, C143-C145(2003) https://doi.org/10.1149/1.1605271
  48. Radisic, A., Long, J. G., Hoffmann, P. M. and Searson, P. C., 'Nucleation and Growth of Copper on TiN from Pyrophosphate Solution,' J. Electrochem. Soc., 148, C41-C46(2001) https://doi.org/10.1149/1.1344539
  49. Graham, L., Steinbruchel, C. and Duquette, D. J., "Nucleation and Growth of Electrochemically Deposited Copper on TiN and Copper from Cu-NH3 Bath," J. Electrochem. Soc., 149, C390-C395(2002) https://doi.org/10.1149/1.1487836
  50. Kim, J. J. and Cha, S. H., "Optimized Surface Pre-Treatments for Cu Electroplating in ULSI Device Interconnection," Jpn. J. Appl. Phys. Part 1, 40, 7151-7155(2001) https://doi.org/10.1143/JJAP.40.7151
  51. Cho, S. K., Kim, S.-K., Han, H., Kim, J. J. and Oh, S. M., 'Damascene Cu Electrodeposition on Metal Organic Chemical Vapor Deposition-Grown Ru Thin Film Barrier,' J. Vac. Sci. Technol., B 22, 2649-2653(2004) https://doi.org/10.1116/1.1819911
  52. Moffat, T. P., Walker, M., Chen, P. J., Bonevich, J. E., Egelhoff, W. F., Richter, L., Witt, C., Aaltonen, T., Ritala, M., Leskela, M. and Josell, D., "Electrodeposition of Cu on Ru Barrier Layers for Damascene Processing," J. Electrochem. Soc., 153, C37-C50(2006) https://doi.org/10.1149/1.2131826
  53. Josell, D., Witt, C. and Moffat, T. P., "Osmium Barriers for Direct Copper Electrodeposition in Damascene Processing," Electrochem. Solid-State Lett., 9, C41-C43(2006) https://doi.org/10.1149/1.2149214
  54. Josell, D., Bonevich, J. E., Moffat, T. P., Aaltonen, T., Ritala, M. and Leskela, M., “"ridium Barriers for Direct Copper Electrodeposition in Damascene Processing," Electorchem. Solid-State Lett., 9, C48-C50(2006) https://doi.org/10.1149/1.2150165
  55. Baker, B., Witt, C., Wheeler, D., Josell, D. and Moffat, T. P., "Superconformal Silver Deposition Using KSeCN Derivatized Substrates," Electrochem. Solid-State Lett., 6, C67-C69(2003) https://doi.org/10.1149/1.1561280
  56. Josell, D., Burkhard, C., Li, Y., Cheng, Y.-W., Keller, R. R., Witt, C. A., Kelley, D. R., Bonevich, J. E., Baker, B. C. and Moffat, T. P., "Electrical Properties of Superfilled Sub-Micrometer Silver Metallizations," J. Appl. Phys., 96, 759-768(2004) https://doi.org/10.1063/1.1757655
  57. Baker, B. C., Freeman, M., Melnick, B., Wheeler, D., Josell, D. and Moffat, T. P., "Superconformal Electrodeposition of Silver from a KAg$(CN)_2$-KCN-KSeCN Electrolyte," J. Electrochem. Soc., 150, C61-C66(2003) https://doi.org/10.1149/1.1531195
  58. Cho, S. K., Lee, J. K., Kim, S.-K. and Kim, J. J., "Acceleration Effect of CuCN in Ag Electroplating for Ultralarge-Scale Interconnects," Electrochem. Solid-State Lett., 10, D116-D119(2007) https://doi.org/10.1149/1.2769103
  59. Koo, H.-C., Ahn, E. J. and Kim, J. J., "Direct-Electroplating of Ag on Pretreated TiN Surfaces," J. Electrochem. Soc., 155, D10-D13(2008) https://doi.org/10.1149/1.2799085
  60. Koo, H.-C., Cho, S. K., Lee, C. H., Kim, S.-K., Kwon, O. J. and Kim, J. J., "Silver Direct Electrodeposition on Ru Thin Films," J. Electroche. Soc., 155, D389-D394(2008) https://doi.org/10.1149/1.2890394
  61. Chang, S.-Y., Hsu, C.-J., Fang, R.-H. and Lin, S.-J., "Electrochemical Deposition of Nanoscaled Palladium Catalysts for 65 nm Copper Metallization," J. Electrochem. Soc. 150, C603-C607(2003) https://doi.org/10.1149/1.1598212
  62. Tseng, W.-T., Lo, C.-H. and Lee, S.-C., "Electroless Deposition of Cu Thin Films with CuCl2-HNO3 Based Chemistry: I. Chemical Formulation and Reaction Mechanisms," J. Electrochem. Soc., 148, C327-C332(2001) https://doi.org/10.1149/1.1359200
  63. Hsu, H.-H., Teng, C.-W., Lin, S.-J. and Yeh, J.-W., "Sn/Pd Catalyzation and Electroless Cu Deposition on TaN Diffusion Barrier Layers," J. Electrochem. Soc., 149, C143-C149(2002) https://doi.org/10.1149/1.1436084
  64. Lee, C. H. and Kim, J. J., 'Effects of Pd Activation on the Self Annealing of Electroless Copper Deposition Using Co(II)–Ethylenediamine as a Reducing Agent,' J. Vac. Sci. Technol. B., 23, 475-479(2005) https://doi.org/10.1116/1.1868673
  65. Lee, C. H., Hwang, S., Kim, S.-C. and Kim, J. J., "Cu Electroless Deposition onto Ta Substrates," Electrochem. Solid-State Lett., 9, C157-C160(2006) https://doi.org/10.1149/1.2225726
  66. Lee, C. H., Cha, S. H., Kim, A. R., Hong, J.-H. and Kim, J. J., "Optimization of a Pretreatment for Copper Electroless Deposition on Ta Substrates," J. Electrochem. Soc., 154, D182-D187(2007) https://doi.org/10.1149/1.2432074
  67. Kim, J. J., Cha, S. H. and Lee, Y.-S., "Seedless Fill-Up of the Damascene Structure Only by Copper Electroless Plating," Jpn. J. Appl. Phys., 42, L953-L955(2003) https://doi.org/10.1143/JJAP.42.L953
  68. Lim, J.-H., Hsieh, W.-J., Hsu, J.-W., Liu, X.-W., Chen, U.-S. and Shih, H. C., "Gap-filling Capability and Adhesion Strength of the Electroless-plated Copper for Submicron Interconnect Metallization," J. Vac. Sci. Tehcnol. B., 20, 561-565(2002) https://doi.org/10.1116/1.1453456
  69. Hsu, H.-H., Teng, C.-W., Lin, S.-J. and Yeh, J.-W., "Electroless Copper Deposition for Ultralarge-Scale Integration," J. Electrochem. Soc., 148, C47-C53(2001) https://doi.org/10.1149/1.1344538
  70. Shingubara, S., Wang, Z., Yaegashi, O., Obata, R., Sakaue, H. and Takahagi, T., 'Bottom-Up Fill of Copper in High Aspect Ratio Via Holes by Electroless Plating,' Tech. Dig. Int. Electron Devices Meet., 147-150(2003) https://doi.org/10.1109/IEDM.2003.1269186
  71. Shingubara, S., Wang, Z., Yaegashi, O., Obata, R., Sakaue, H. and Takahagi, T., "Bottom-Up Fill of Copper in Deep Submicrometer Holes by Electroless Plating," Electrochem. Solid-State Lett., 7, C78-C80(2004) https://doi.org/10.1149/1.1707029
  72. Lee, C. H., Lee, S. C. and Kim, J. J., "Bottom-Up Filling in Cu Electroless Deposition Using Bis-(3-Sulfopropyl)-Disulfide(SPS)," Electrochem. Acta, 50, 3563-3568(2005) https://doi.org/10.1016/j.electacta.2005.01.009
  73. Lee, C. H., Lee, S. C. and Kim, J. J., "Improvement of Electrolessly Gap-Filled Cu Using 2,2'-Dipyridyl and Bis-(3-sulfopropyl)- disulfide (SPS)," Electrochem. Solid-State Lett., 8, C110-C113 (2005) https://doi.org/10.1149/1.1943551
  74. Lee, C. H., Cho, S. K. and Kim, J. J., "Electroless Cu Bottom-Up Filling Using 3-N,N-Dimethylaminodithiocarbamoyl-1-propanesulfonic acid," Electrochem. Solid-State Lett., 8, J27-J29(2005) https://doi.org/10.1149/1.2063291
  75. Lee, C. H., Kim, A. R., Kim, S.-K., Koo, H.-C., Cho, S. K. and Kim, J. J., "Two-Step Filling in Cu Electroless Deposition Using a Concentration-Dependent Effect of 3-N,N-dimethylaminodithiocarbamoyl-1-propanesulfonic Acid," Electrochem. Solid-State Lett., 11, D18-D21(2008) https://doi.org/10.1149/1.2798877
  76. Norkus, E., Vaskelis, A., Jagminiene, A. and Tamasauskaite-Tamasiunaite, L., "Kinetics of Electroless Silver Deposition Using Cobalt (II)-Ammonia Complex Compounds As Reducing Agents," J. Appl. Electrochem., 31, 1061-1066(2001) https://doi.org/10.1023/A:1017983025030
  77. Vaskelis, A., Jagminiene, A., Juskenas, R., Matulionis, E. and Norkus, E., "Structure of Electroless Silver Coatings Obtained Using Cobalt(II) as Reducing Agent," Surf. Coat. Technol., 82, 165-168(1996) https://doi.org/10.1016/0257-8972(95)02673-8
  78. Vaskelis, A. and Norkus, E., "Autocatalytic Processes of Copper (II) and Silver(I) Reduction by Cobalt(II) Complexes," Electrochim. Acta, 44, 3667-3677(1999) https://doi.org/10.1016/S0013-4686(99)00070-5
  79. Inberg, A., Zhu, L., Hirschberg, G., Gladkikh, A., Croitoru, N., Shacham-Diamand, Y. and Gileadi, E., "Characterization of the Initial Growth Stages of Electroless Ag(W) Films Deposited on Si(100)," J. Electrochem. Soc., 148, C784-C789(2001) https://doi.org/10.1149/1.1415549
  80. Inberg, A., Shacham-Diamand, Y., Rabinovich, E., Golan, G. and Croitoru, N., "Electroless-Deposited Ag-W Films for Microelectronics Applications," Thin Solid Films, 389, 213-218(2001) https://doi.org/10.1016/S0040-6090(01)00862-8
  81. Shacham-Diamand, Y., Inberg, A., Sverdlov, Y. and Croitoru, N., "Electroless Silver and Silver with Tungsten Thin Films for Microelectronics and Microelectromechanical System Applications," J. Electrochem. Soc., 147, 3345-3349(2000) https://doi.org/10.1149/1.1393904
  82. Kortenarr, M. V., Goeij, J. J., Kolar, Z. I., Frens, G., Lusse, P. J., Zuiddam, M. R. and Drift, E., "Electroless Silver Deposition in 100 nm Silicon Structures," J. Electrochem. Soc., 148, C28-C33 (2001) https://doi.org/10.1149/1.1344536
  83. Cha, S. H., Koo, H.-C. and Kim, J. J., "The Inhibition of Silver Agglomeration by Gold Activation in Silver Electroless Plating," J. Electrochem. Soc., 152, C388-C391(2005) https://doi.org/10.1149/1.1905984