Production of Bacterial Cellulose by Gluconacetobacter hansenii Using a New Bioreactor Equipped with Centrifugal Impellers

원심 임펠러가 장착된 발효조에서 G. hansenii에 의한 미생물셀룰로오스 생산

  • Khan, Salman (Department of Chemical Engineering, Kyungpook National University) ;
  • Shehzad, Omer (Department of Chemical Engineering, Kyungpook National University) ;
  • Khan, Taous (Department of Pharmaceutical Science, COMSATS Insititute of Information Technology) ;
  • Ha, Jung Hwan (Department of Chemical Engineering, Kyungpook National University) ;
  • Park, Joong Kon (Department of Chemical Engineering, Kyungpook National University)
  • 칸살만 (경북대학교 화학공학과 생물화공연구실) ;
  • 쉐자드오머 (경북대학교 화학공학과 생물화공연구실) ;
  • 칸타우스 (콤사츠대학교 약학과) ;
  • 하정환 (경북대학교 화학공학과 생물화공연구실) ;
  • 박중곤 (경북대학교 화학공학과 생물화공연구실)
  • Received : 2009.06.01
  • Accepted : 2009.07.03
  • Published : 2009.08.31

Abstract

In order to improve the bacterial cellulose(BC) production yield, centrifugal and inclined centrifugal impellers were developed. A 6 flat-blade turbine impeller was used as a control system. The flow pattern in the fermenter and volumetric oxygen transfer coefficient($k_La$) of these fermentation systems were studied. Fermentations were carried out for the production of BC by G. hansenii PJK in a 2-L jar fermenter equipped with new impellers. Liquid medium was circulated from the bottom, through the cylinder of the impeller and to the wall. The volumetric oxygen transfer coefficients, $k_La$, of inclined centrifugal and centrifugal impeller systems at 100 rpm were 23 and 15% of the conventional turbine impeller system, respectively. However, the conversion of microbial cells to cellulose non-producing mutant decreased and this results in the increase in BC production at low rotating speed of impellers.

미생물셀룰로오스의 생산성을 높이기 위하여 원심(centrifugal) 임펠러와 경사원심(inclined centrifugal) 임펠러가 사용되었다. 발효조 내의 유체흐름 형태와 부피산소전달 계수가 고찰되었으며 원심 임펠러 및 경사원심 임펠러가 장착된 발효조 내에서 G. hansenii PJK 균주에 의하여 미생물 셀룰로오스가 생산되었다. 유체는 발효조 하부에서 원심 임펠러의 실린더 내부를 통과하여 발효조 벽면을 향해 순환되었다. 임펠러의 회전속도 100 rpm에서 부피산소전달계수는 터바인 임펠러 계에 비하여 경사원심 임펠러의 경우는 23%, 원심 임펠러의 경우는 15%에 불과하였다. 하지만 미생물셀룰로오스 생산 불능 돌연변이주로의 전환이 방지되어 20 rpm의 경사원심 임펠러의 회전속도에서 미생물셀룰로오스의 생산량이 터바인임펠러의 최적회전속도 300 rpm에서의 미생물셀룰로오스 생산량과 같았다.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Delmer, D. P., "Cellulose Biosynthesis: Exciting Times for a Difficult Field of Study," Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 245-276(1999) https://doi.org/10.1146/annurev.arplant.50.1.245
  2. Ross, P., Mayer, R. and Benziman, M., 'Cellulose Biosynthesis and Function in Bacteria,' Microbiol. Rev., 55, 35-58(1991)
  3. Yoshino, T., Asakura, T. and Toda, K., "Cellulose Production by Acetobacter pasteurianus on Silicone Membrane," J. Ferment. Bioeng., 81, 32-36(1996) https://doi.org/10.1016/0922-338X(96)83116-3
  4. Klemm, D., Schumann, D., Udhard, U. and Marsch, S., "Bacterial Synthesized Cellulose - Artficial Blood Vessels for Microsurgery," Prog. Polym. Sci., 26, 1561-1603(2001) https://doi.org/10.1016/S0079-6700(01)00021-1
  5. Ponyi, T., Szabo, L., Nagy, T., Orosz, L., Simpson, P. J., Williamson, M. P. and Gilbert, H. J., "Trp22, Trp24 and Tyr8 Play a Pivotal Role in the Binding of the Family 10 Cellulose-Binding Module from Pseudomonas xylanase A to Insoluble Ligands," J. Biochem., 39, 985-991(2000) https://doi.org/10.1021/bi9921642
  6. Vandamme, E. J., De Baets, S., Vanbaelen, A., Joris, K. and De Wulf, P., "Improved Production of Bacterial Cellulose and Its Application Potential," Polym. Degrad. Stabil., 59, 93-99(1998) https://doi.org/10.1016/S0141-3910(97)00185-7
  7. Park, J. K., Park, Y. H. and Jung, J. Y., "Production of Bacterial Cellulose by Gluconacetobacter hansenii PJK Isolated from Rotten Apple," Biotechnol. Bioprocess. Eng., 8, 83-88(2003) https://doi.org/10.1007/BF02940261
  8. Valla, S. and Kjosbakken, J., 'Cellulose-Negative Mutants of Acetobacter xylinum,' J. General Microb., 128, 1401-1408(1981) https://doi.org/10.1099/00221287-128-7-1401
  9. Park, J. K., Jung, J. Y. and Park, Y. H., "Cellulose Production by Gluconacetobacter hansenii in a Medium Containing Ethanol," Biotechnol. Lett., 25, 2055-2059(2003) https://doi.org/10.1023/B:BILE.0000007065.63682.18
  10. Coucheron, D. H., 'An Acetobacter xylinum Insertion Sequence Element Associated with Inactivation of Cellulose Production,' J. Bacteriol., 173, 5723-5731(1991) https://doi.org/10.1128/jb.173.18.5723-5731.1991
  11. Jung, J. Y., Park, J. K. and Chang, H. N., 'Bacterial Cellulose Production by Gluconacetobacter hansenii in an Agitated Culture without living non-Cellulose Producing Cells,' Enzyme Microb. Technol., 37, 347-354(2005) https://doi.org/10.1016/j.enzmictec.2005.02.019
  12. Jung, J. Y., Khan, T., Park, J. K. and Chang, H. N., "Bacterial Cellulose Production by Gluconacetobacter hansenii Using a Novel Bioreactor Equipped with a Spin Filter," Korean J. Chem. Eng., 24, 265-271(2007) https://doi.org/10.1007/s11814-007-5058-4
  13. Wang, S. J and Zhong, J. J., 'A Novel Centrifugal Impeller Bioreactor. I. Fluid Circulation, Mixing, and Liquid Velocity Profile,' Biotechnol. Bioprocess Eng, 51, 511-519(1996) https://doi.org/10.1002/(SICI)1097-0290(19960905)51:5<511::AID-BIT2>3.0.CO;2-F
  14. Wang, S. J and Zhong, J. J., 'A Novel Centrifugal Impeller Bioreactor. II. Oxygen Transfer and Power Consumption,' Biotechnol. Bioprocess Eng, 51, 520-527(1996) https://doi.org/10.1002/(SICI)1097-0290(19960905)51:5<520::AID-BIT3>3.0.CO;2-E
  15. Choi, S. B. and Park, J. K., "Metal Recovery by Aged Beads Prepared by Cell-Suspension from the Waste of Beer Fermentation Broth," Korean J. Chem. Eng., 26(2), 457-461(2009) https://doi.org/10.1007/s11814-009-0078-x
  16. Khan, T. and Park, J. K., "The Structure and Physical Properties of Glucuronic Acid Oligomers Produced by a Gluconacetobacter hansenii Strain Using the Waste from Beer Fermentation Broth," Carbohydr. Polym., 73(3), 438-445(2008) https://doi.org/10.1016/j.carbpol.2007.12.010
  17. Ha, J. H., Shehzad, O., Khan, S., Lee, S. and Park, J. K., "Production of Bacterial Cellulose by a Static Cultivation Using the Waste from Beer Culture Broth," Korean J. Chem. Eng., 25(4), 812-815(2008) https://doi.org/10.1007/s11814-008-0134-y
  18. Park, J. K., Hyun, S. H. and Jung, J. Y., "Conversion of G. hansenii PJK into non-Cellulose-Producing Mutants According to the Culture Condition," Biotechnol. Bioprocess Eng., 9(5), 383-388 (2004) https://doi.org/10.1007/BF02933062
  19. Jung, G. S. and Park, J. K., "An Effect of Capsule Circulation Velocity on Production of L-lysine from Encapsulated Corynebacterium glutamicum in an Air Lift Reactor," J. Biosci. Bioeng., 91, 81-84(2001) https://doi.org/10.1263/jbb.91.81
  20. Seo, K. S., Chang, H. N., Park, J. K. and Choo, K. H., "Effects of Dilution on Dissolved Oxygen Depletion and Microbial Populations in the Biochemical Oxygen Demand Determination," Appl. Microbiol. Biotechnol., 76(4), 951-956(2007) https://doi.org/10.1007/s00253-007-1055-0
  21. Park, J. K., Khan, T. and Jung, J. Y., "Structural Studies of the Glucuronic Acid Oligomers Produced by Gluconacetobacter hansenii Strain," Carbohydr. Polym., 63(4), 482-486(2006) https://doi.org/10.1016/j.carbpol.2005.10.004