DOI QR코드

DOI QR Code

The PcG protein hPc2 interacts with the N-terminus of histone demethylase JARID1B and acts as a transcriptional co-repressor

  • Zhou, Wu (Institute of Immunology, Zhejiang University) ;
  • Chen, Haixiang (Institute of Immunology, Zhejiang University) ;
  • Zhang, Lihuang (Institute of Immunology, Zhejiang University)
  • Published : 2009.03.31

Abstract

JARID1B (jumonji AT rich interactive domain 1B) is a large nuclear protein that is highly expressed in breast cancers and is proposed to function as a repressor of gene expression. In this paper, a phage display screen using the N-terminus of JARID1B as bait identified one of the JARID1B interacting proteins, namely PcG protein (Polycomb group) hPc2. We demonstrated that the C-terminal region, including the COOH box, was required for the interaction with the N-terminus of JARID1B. In a reporter assay system, co-expression of JARID1B with hPc2 significantly enhanced the transcriptional repression. These results support a role for hPc2 acting as a transcriptional co-repressor.

Keywords

References

  1. Lu, P.J., Sundquist, K., Baeckstrom, D., Poulsom, R., Hanby, A., Meier-Ewert, S., Jones, T., Mitchell, M., Pitha- Rowe, P., Freemont, P. and Taylor-Papadimitriou, J. (1999) A novel gene (PLU-1) containing highly conserved putative DNA/chromatin binding motifs is specifically up-regulated in breast cancer. J. Biol. Chem. 274, 15633-15645 https://doi.org/10.1074/jbc.274.22.15633
  2. Barrett, A., Madsen, B., Copier, J., Lu, P.J., Cooper, L., Scibetta, A. G., Burchell, J. and Taylor-Papadimitriou, J. (2002) PLU-1 nuclear protein, which is upregulated in breast cancer, shows restricted expression in normal human adult tissues: a new cancer/testis antigen? Int. J. Cancer 101, 581-588 https://doi.org/10.1002/ijc.10644
  3. Tan, K., Shaw, A.L., Madsen, B., Jensen, K., Taylor- Papadimitriou, J. and Freemont, P.S. (2003) Human PLU-1 Has transcriptional repression properties and interacts with the developmental transcription factors BF-1 and PAX9. J. Biol. Chem. 278, 20507-20513 https://doi.org/10.1074/jbc.M301994200
  4. Yamane, K., Tateishi, K., Klose, R.J., Fang, J., Fabrizio, L.A., Erdjument-Bromage, H., Taylor-Papadimitriou, J., Tempst, P. and Zhang, Y. (2007) PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol. Cell 25, 801-812 https://doi.org/10.1016/j.molcel.2007.03.001
  5. Christensen, J., Agger, K., Cloos, P.A., Pasini, D., Rose, S., Sennels, L., Rappsilber, J., Hansen, K.H., Salcini, A.E. and Helin, K. (2007) RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3. Cell 128, 1063-1076 https://doi.org/10.1016/j.cell.2007.02.003
  6. Pirrotta, V. (1997) PcG complexes and chromatin silencing. Curr. Opin. Genet. Dev. 7, 249-258 https://doi.org/10.1016/S0959-437X(97)80135-9
  7. Satijn, D. P. and Otte, A. P. (1999) RING1 interacts with multiple Polycomb-group proteins and displays tumorigenic activity. Mol. Cell Biol. 19, 57-68
  8. Satijn, D. P., Olson, D. J., van der Vlag, J., Hamer, K. M., Lambrechts, C., Masselink, H., Gunster, M. J., Sewalt, R. G., van Driel, R. and Otte, A. P. (1997) Interference with the expression of a novel human polycomb protein, hPc2, results in cellular transformation and apoptosis. Mol. Cell Biol. 17, 6076-6086
  9. Bernstein, E., Duncan, E. M., Masui, O., Gil, J., Heard, E. and Allis, C. D. (2006) Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol. Cell Biol. 26, 2560-2569 https://doi.org/10.1128/MCB.26.7.2560-2569.2006
  10. Muller, J., Gaunt, S. and Lawrence, P. A. (1995) Function of the polycomb protein is conserved in mice and flies. Development 121, 2847-2852
  11. Bunker, C. A. and Kingston, R. E. (1994) Transcriptional repression by Drosophila and mammalian Polycomb group proteins in transfected mammalian cells. Mol. Cell Biol. 14, 1721-1732
  12. Kang, H.T., Bang, W.K. and Yu, Y.G. (2004) Identification and characterization of a novel angiostatin-binding protein by the display cloning method. J. Biochem. Mol. Biol. 37, 159-166 https://doi.org/10.5483/BMBRep.2004.37.2.159
  13. Mahapatra, N.R., Taupenot, L., Courel, M., Mahata, S.K. and O'Connor, D.T. (2008) The trans-Golgi proteins SCLIP and SCG10 Interact with chromogranin a to regulate neuroendocrine secretion. Biochemistry 47, 7167- 7178 https://doi.org/10.1021/bi7019996
  14. Francis, N.J. and Kingston, R.E. (2001) Mechanisms of transcriptional memory. Nat. Rev. Mol. Cell Biol. 2, 409- 421 https://doi.org/10.1038/35073039
  15. Pirrotta, V. (1998) Polycombing the genome: PcG, trxG, and chromatin silencing. Cell 93, 333-336 https://doi.org/10.1016/S0092-8674(00)81162-9
  16. Lund, A.H. and Lohuizen, M.V. (2004) Polycomb complexes and silencing mechanisms. Curr. Opin. Cell Biol. 16, 239-246 https://doi.org/10.1016/j.ceb.2004.03.010
  17. Dahiya, A., Wong, S., Gonzalo, S., Gavin, M. and Dean, D.C. (2001) Linking the Rb and polycomb pathways. Mol. Cell 8, 557-569 https://doi.org/10.1016/S1097-2765(01)00346-X
  18. Kagey, M.H., Melhuish, T.A. and Wotton, D. (2003) The polycomb protein Pc2 is a SUMO E3. Cell 113, 127-137 https://doi.org/10.1016/S0092-8674(03)00159-4
  19. Jackson, P.K. (2001) A new RING for SUMO: wrestling transcriptional responses into nuclear bodies with PIAS family E3 SUMO ligases. Genes Dev. 15, 3053-3058 https://doi.org/10.1101/gad.955501

Cited by

  1. Overexpression of Jumonji AT-rich interactive domain 1B and PHD finger protein 2 is involved in the progression of esophageal squamous cell carcinoma vol.115, pp.1, 2013, https://doi.org/10.1016/j.acthis.2012.04.001
  2. SUMOylation negatively modulates target gene occupancy of the KDM5B, a histone lysine demethylase vol.8, pp.11, 2013, https://doi.org/10.4161/epi.26112
  3. Histone demethylases in development and disease vol.20, pp.11, 2010, https://doi.org/10.1016/j.tcb.2010.08.011
  4. CDX2-driven leukemogenesis involves KLF4 repression and deregulated PPARγ signaling vol.123, pp.1, 2013, https://doi.org/10.1172/JCI64745
  5. Histone lysine demethylases in breast cancer vol.86, pp.2, 2013, https://doi.org/10.1016/j.critrevonc.2012.11.008
  6. A three-gene signature and clinical outcome in esophageal squamous cell carcinoma vol.136, pp.6, 2015, https://doi.org/10.1002/ijc.29211
  7. Regulation of Human Epidermal Stem Cell Proliferation and Senescence Requires Polycomb- Dependent and -Independent Functions of Cbx4 vol.9, pp.3, 2011, https://doi.org/10.1016/j.stem.2011.07.013