Acknowledgement
Supported by : 한국학술진흥재단
References
- C. von Sonntag and H.-P. Schuchmann, Angew. Chem. Int. Ed. Engl., 30, 1229 (1991) https://doi.org/10.1002/anie.199112291
- C. von Sonntag, Free-radical-induced DNA damage and its repair: A Chemical Perspective. Springer, Berlin, 2006, 357-481
- B. H. J. Bielski, D. E. Cabelli, R. L. Arudi, and A. B. Ross, J. Phys. Chem. Ref. Data, 14, 1041 (1985) https://doi.org/10.1063/1.555739
- B. H. J. Bielski and A. O. Allen, J. Phys. Chem., 81, 1048 (1977)
- I. Kruk, Environmental Toxicology and Chemistry of Oxygen Species. The Handbook of Environmental Chemistry, Volume 2 Reactions and Processes (Part I), ed. O. Hutzinger, 5, Springer, Berlin (1997)
- Encyclopedia of Science & Technology, 17 SOR-SUP, 10th Edition, 748, McGraw-Hill, New York (2007)
- J. M. McCord and I. Fridovich, J. Biol. Chem., 244, 6049 (1969)
- I. Fridovich, J. Biol. Chem., 272, 18515 (1997) https://doi.org/10.1074/jbc.272.30.18515
- L. K. Limbach, P. Wick, P. Manser, R. N. Grass, A. Bruinink, and W. J. Stark, Environ. Sci. Technol., 41, 4158 (2007) https://doi.org/10.1021/es062629t
-
A. Nel, T. Xia, L. M
$\ddot{a}$ dler, and N. Li, Science, 311, 622 (2006) https://doi.org/10.1126/science.1114397 -
A. D. Maynard, R. J. Aitken, T. Butz, V. Colvin, K. Donaldson, G. Oberd
$\ddot{o}$ rster, M. A. Philbert, J. Ryan, A. Seaton, V. Stone, S. S. Tinkle, l. Tran, N. J. Water, and D. B. Warheit, Nature, 444, 267 (2006) https://doi.org/10.1038/444267a - H. J. H. Fenton, J. Chem. Soc. Proc., 10, 157 (1894)
- H. Lim, K. C. Namkung, and J. Yoon, J. Korean Ind. Eng. Chem., 16, 9 (2005)
- F. Haber and J. J. Weiss, Proc. R. Soc. London, Ser. A., 147, 332 (1934) https://doi.org/10.1098/rspa.1934.0221
- Wikipedia homepage, http://en.wikipedia.org/wiki/Electron_spin_resonance (2009)
- 김영곤, 김영균, 프리라디칼: 유해 활성산소를 중심으로, 240, 도서출판 여민각, 서울 (1997)
- I. Fridovich, Acc. Chem. Res., 5, 321 (1972) https://doi.org/10.1021/ar50058a001
- S. G. Lias, J. F. Liebman, and R. D. Levin, J. Phys. Chem. Ref. Data, 13, 1984
- R. Sanders, Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry, http://www.mpch-mainz.mpg.de/~sander/res/henry.html. version 3 (1999)
- C. Bull, G. J. McClune, and J. A. Fee, J. Am. Chem. Soc., 105, 5290 (1983) https://doi.org/10.1021/ja00354a019
- C. Bull and J. A. Fee, J. Am. Chem. Soc., 107, 3295 (1985) https://doi.org/10.1021/ja00297a040
- C. Bull, E. C. Niederhoffer, T. Yoshida, and J. A. Fee, J. Am. Chem. Soc., 113, 4069 (1991) https://doi.org/10.1021/ja00011a003
- B. G. Kwon and J. H. Lee, Anal. Chem., 76, 6359 (2004) https://doi.org/10.1021/ac0493828
- B. G. Kwon, E. Kim, and J. H. Lee, Chemosphere, 74, 1335 (2009) https://doi.org/10.1016/j.chemosphere.2008.11.049
- B. G. Kwon and J. H. Lee, Bull. Korean Chem. Soc., 27, 1785 (2006) https://doi.org/10.5012/bkcs.2006.27.11.1785
-
J. Staehelin and J. Hoign
\acute{e} , Environ. Sci. Technol., 16, 676 (1982) https://doi.org/10.1021/es00104a009 -
R. E. B
\acute{e} hler, J. Staehelin, and J. Hoign\acute{e} , J. Phys. Chem. 88, 2560 (1984) https://doi.org/10.1021/j150656a026 - U. von Gunten, Water Res., 37, 1443 (2003) https://doi.org/10.1016/S0043-1354(02)00457-8
-
J. Hoign
\acute{e} , H. Bader, W. R. Haag, and J. Staehelin, Water Res., 19, 993 (1985) https://doi.org/10.1016/0043-1354(85)90368-9 -
J. Staehelin and J. Hoign
\acute{e} , Environ. Sci. Technol., 19, 1206 (1985) https://doi.org/10.1021/es00142a012 - R. Flyunt, A. Leitzke, G. Mark, E. Mvula, E. Reisz, R. Schick, and C. von Sonntag, J. Phys. Chem. B, 107, 7242 (2003) https://doi.org/10.1021/jp022455b
- W. H. Glaze, Y. Lay, and J. W. Kang, Ind. Eng. Chem. Res., 34, 2314 (1995) https://doi.org/10.1021/ie00046a013
- K. Sehested, H. Corfitzen, J. Holcman, C. H. Fischer, and E. J. Hart, Environ. Sci. Technol., 25, 1589 (1991) https://doi.org/10.1021/es00021a010
- J. L. Acero, K. Stemmler, and U. von Gunten, Environ. Sci. Technol., 34, 591 (2000) https://doi.org/10.1021/es990724e
- L. Forni, D. Bahnemann, and E. J. Hart, J. Phys. Chem., 86, 255 (1982) https://doi.org/10.1021/j100391a025
- K. Sehested, J. Holcman, and E. J. Hart, J. Phys. Chem., 87, 1951 (1983) https://doi.org/10.1021/j100234a024
- M. R. Hoffman, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 95, 69 (1995) https://doi.org/10.1021/cr00033a004
- A. Fujishima, T. N. Rao, and D. A. Tryk, J. Photochem. Photobiol. C: Reviews., 1, 1 (2000) https://doi.org/10.1016/S1389-5567(00)00002-2
- Y. Nosaka, Y. Yamashita, and H. Fukuyama, J. Phys. Chem. B, 101, 5822-(1997) https://doi.org/10.1021/jp970400h
- T. Hirakawa and Y. Nosaka, Langmuir, 18, 3247 (2002) https://doi.org/10.1021/la015685a
- T. Hirkawa, T. Daimon, M. Kitazawa, N. Ohguri, C. Koga, N. Negishi, S. Matsuzawa, and Y. Nosaka, J. Photochem. Photobiol. A: Chemistry, 190, 58 (2007) https://doi.org/10.1016/j.jphotochem.2007.03.012
- H. Gerischer and A. Heller, J. Phys. Chem., 95, 5261 (1991) https://doi.org/10.1021/j100166a063
- R. Nakamura and Y. Nakato, J. Am. Chem. Soc., 126, 1290 (2004) https://doi.org/10.1021/ja0388764
- K. Ishibashi, Y. Nosaka, K. Hashimoto, and A. Fujishima, J. Phys. Chem. B, 102, 2117 (1998) https://doi.org/10.1021/jp973401i
- K. Ishibashi, A. Fujishima, T. Watanabe, and K. Hashimoto, J. Phys. Chem. B, 104, 4934 (2000) https://doi.org/10.1021/jp9942670
- T. Hirakawa, H. Kominami, B. Ohtani, and Y. Nosaka, J. Phys. Chem. B, 105, 6993 (2001) https://doi.org/10.1021/jp0112929
- T. Hirakawa, Y. Nakaoka, J. Nishino, and Y. Nosaka, J. Phys. Chem. B, 103, 4399 (1999) https://doi.org/10.1021/jp9840984
- T. Hirkawa, K. Yawata, and Y. Nosaka, Applied Catalysis A, 325, 105 (2007) https://doi.org/10.1016/j.apcata.2007.03.015
- B. G. Kwon, J. Photochem. Photobiol., A, 199, 112 (2008) https://doi.org/10.1016/j.jphotochem.2008.05.001
- S. R. Cater, M. I. Stefan, J. R. Bolton, and A. Safarzadeh-Amiri, Environ. Sci. Technol., 34, 659 (2000) https://doi.org/10.1021/es9905750
- M. I. Stefan and J. R. Bolton, Environ. Sci. Technol., 32, 1588 (1998) https://doi.org/10.1021/es970633m
- O. Legrini, E. Oliveros, and A. M. Braun, Chem. Rev., 93, 671 (1993) https://doi.org/10.1021/cr00018a003
- K. A. Hislop and J. R. Bolton, Environ. Sci. Technol., 33, 3119 (1999) https://doi.org/10.1021/es9810134
- E. J. Rosenfeldt and K. G. Linden, Environ. Sci. Technol., 41, 2548 (2007) https://doi.org/10.1021/es062353p
- S. R. Sarathy and M. Mohseni, Environ. Sci. Technol., 41, 8315 (2007) https://doi.org/10.1021/es071602m
- J. Jeong and J. Yoon, Water Res., 39, 2893 (2005) https://doi.org/10.1016/j.watres.2005.05.014
- N. Getoff, Radiat. Phys. Chem., 47, 581 (1996) https://doi.org/10.1016/0969-806X(95)00059-7
- A. K. Pikaev, High Energ. Chem., 34, 1(2000) https://doi.org/10.1007/BF02761780
- A. K. Pikaev, High Energ. Chem. 34, 55 (2000) https://doi.org/10.1007/BF02761832
- M. G. Nickelsen, W. J. Cooper, C. N. Kurucz, and T. D. Waite, Environ. Sci. Technol., 26, 144 (1992) https://doi.org/10.1021/es00025a016
- M. G. Nickelsen, W. J. Cooper, K. Lin, and C. N. Kurucz, Water Res., 28, 1227 (1994) https://doi.org/10.1016/0043-1354(94)90211-9
- C. N. Kurucz, T. D. Waite, and W. J. Cooper, Radiat. Phys. Chem., 45, 299 (1995) https://doi.org/10.1016/0969-806X(94)00075-1
- M. G. Bettoli, M. Ravanelli, L. Tositti, O. Tubertini, L. Guzzi, W. Martinotti, G. Gueirazza, and M. Tamba, Radiat. Phys. Chem., 52, 327 (1998) https://doi.org/10.1016/S0969-806X(98)00027-9
- D. C. Schmelling, D. L. Poster, M. Chaychian, P. Neta, J. Silverman, and M. Al-Sheikhly, Environ. Sci. Technol., 32, 270 (1998) https://doi.org/10.1021/es9704601
- R. Zona, S. Schimid, and S. Solar, Water Res., 33, 1314 (1999) https://doi.org/10.1016/S0043-1354(98)00319-4
- S. Weihua, Z. Zheng, A.-S. Rami, Z. Tao, and H. Desheng, Radiat. Phys. Chem., 65, 559 (2002) https://doi.org/10.1016/S0969-806X(02)00365-1
- K. Lin, W. J. Cooper, M. G. Nickelsen, C. N. Kurucz, and T. D. Waite, Appl. Radiat. Isotopes, 46, 1307 (1995) https://doi.org/10.1016/0969-8043(95)00236-7
- F. T. Mak, S. R. Zele, W. J. Cooper, C. N. Kurucz, T. D. Waite, and M. G. Nickelsen, Water Res., 31, 219 (1997) https://doi.org/10.1016/S0043-1354(96)00264-3
- P. Gehringer, H. Eschweiler, and H. Fiedler, Radiat. Phys. Chem.,46, 1075 (1995) https://doi.org/10.1016/0969-806X(95)00324-Q
- P. Gehringer, H. Eschweiler, W. Szinovatz, H. Fiedler, R. Steiner, and G. Sonneck, Radiat. Phys. Chem., 42, 711 (1993) https://doi.org/10.1016/0969-806X(93)90357-Z
- P. Gehringer and H. Fiedler, Radiat. Phys. Chem., 52, 345 (1998) https://doi.org/10.1016/S0969-806X(98)00031-0
- G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, J. Phys. Chem. Ref. Data, 17, 513 (1988) https://doi.org/10.1063/1.555805
- R. J. Woods, Radiation Chemistry and its Application to Environmental Pollution, eds. W. J. Cooper, R. D. Curry, K. E. O'Shea, Environmental Applications of Ionizing Radiation, 1, John Wiley & Sons, INC., New York (1998)
- X. Fang, Y. He, J. Liu, and J. Wu, Radiat. Phys. Chem., 53, 411 (1998) https://doi.org/10.1016/S0969-806X(98)00128-5
- K. Donaldson, Nanotoxicity 2007, Sofitel Bercy Paris, Paris, France, (2007)
-
G. Mer
\acute{e} nyi, J. Lind, and T. E. Eriksen, J. Phys. Chem., 88, 2320 (1984) https://doi.org/10.1021/j150655a027 -
G. Mer
\acute{e} nyi, J. Lind, X. Shen, and T. E. Eriksen, J. Phys. Chem., 94, 748 (1990) https://doi.org/10.1021/j100365a043 - M. Cho, H. Chung, W. Choi, and J. Yoon, Appl. Environ. Microbio., 71, 270 (2005) https://doi.org/10.1128/AEM.71.1.270-275.2005
- J. Zheng, S. R. Springston, and J. Weinstein-Lioyd, Anal. Chem., 75, 4696 (2003) https://doi.org/10.1021/ac034429v
- S. E. Schwartz, J. Geophys. Res., 89, 11589 (1984)