DOI QR코드

DOI QR Code

Over-Expression of Phospholipase D Isozymes Down-Regulates Protein Kinase CKII Activity via Proteasome-Dependent CKIIβ Degradation in NIH3T3 Cells

  • Yoon, Soo-Hyun (Department of Biochemistry, College of Natural Sciences, Kyungpook National University) ;
  • Min, Do Sik (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Bae, Young-Seuk (Department of Biochemistry, College of Natural Sciences, Kyungpook National University)
  • Received : 2008.07.28
  • Accepted : 2008.12.22
  • Published : 2009.03.31

Abstract

Over-expression of phospholipase D (PLD) 1 or PLD2 down-regulated CKII activity in NIH3T3 cells. The same results were found with catalytically inactive mutants of PLD isozymes, indicating that the catalytic activity of PLD is not required for PLD-mediated CKII inhibition. Consistent with this, 1-butanol did not alter CKII activity. The reduction in CKII activity in PLD-over-expressing NIH3T3 cells was due to reduced protein level, but not mRNA level, of the $CKII{\beta}$ subunit. This PLD-induced $CKII{\beta}$ degradation was mediated by ubiquitin-proteasome machinery, but MAP kinase and mTOR were not involved in $CKII{\beta}$ degradation. PLD isozymes interacted with the $CKII{\beta}$ subunit. Immunocytochemical staining revealed that PLD and $CKII{\beta}$ colocalize in the cytoplasm of NIH3T3 cells, especially in the perinuclear region. PLD binding to $CKII{\beta}$ inhibited $CKII{\beta}$ autophosphorylation, which is known to be important for $CKII{\beta}$ stability. In summary, the current data indicate that PLD isozymes can down-regulate CKII activity through the acceleration of $CKII{\beta}$ degradation by ubiquitin-proteasome machinery.

Keywords

Acknowledgement

Supported by : Korea Research Foundation, Korea Science and Engineering Foundation

References

  1. Colley, W.C., Sung, R., Jenco, R.L., Hammond, S.M., Altshuller, Y., Bar-Sagi, D., Morris, A.J., and Frohman, M.A. (1997). Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr. Biol. 7, 191-201 https://doi.org/10.1016/S0960-9822(97)70090-3
  2. Desagher, S., Osen-Sand, A., Montessuit, S., Magnenat, E., Vilbois, F., Hochmann, A., Journot, L., Antonsson, B., and Martinou, J.C.(2001). Phosphorylation of Bid by casein kinases I and II regulates its cleavage by caspase 8. Mol. Cell 8, 601-611 https://doi.org/10.1016/S1097-2765(01)00335-5
  3. Exton, J.H. (1997). Phospholipase D: enzymology, mechanisms of regulation, and function. Physiol. Rev. 77, 303-320 https://doi.org/10.1152/physrev.1997.77.2.303
  4. Exton, J.H. (1999). Regulation of phospholipase D. Biochim. Biophys. Acta 1439, 121-133 https://doi.org/10.1016/S1388-1981(99)00089-X
  5. Freyberg, Z., Bourgoin, S., and Shields, D. (2002) Phospholipase D2 is localized to the rims of the Golgi apparatus in mammalian cells. Mol. Biol. Cell 13, 3930-3942 https://doi.org/10.1091/mbc.02-04-0059
  6. Ganley, I.G., Walker, S.J., Manifava, M., Li, D., Brown, H.A., and Ktistakis, N.T. (2001). Interaction of phospholipase D1 with a casein-kinase-2-like serine kinase. Biochem. J. 354, 369-378 https://doi.org/10.1042/0264-6021:3540369
  7. Gietz, R.D., Graham, K.C., and Litchfield, D.W. (1995). Interactions between the subunits of casein kinase II. J. Biol. Chem. 270, 13017-13021 https://doi.org/10.1074/jbc.270.22.13017
  8. Hammond, S.M., Altshuller, Y.M., Sung, T.C., Rudge, S.A., Ross, K., Engebrecht, J., Morris, A.J., and Frohman, M.A. (1995). Human ADP-ribosylation factor-activated phosphatidylcholinespecific phospholipase D defines a new and highly conserved gene family. J. Biol. Chem. 270, 29640-29643 https://doi.org/10.1074/jbc.270.50.29640
  9. Hammond, S.M., Jenco, J.M., Nakashima, S., Cadwallader, K., Gu, Q.M., Cook, S., Nozawa, Y., Prestwich, G.D., Frohman, M.A., and Morris, A.J. (1997). Characterization of two alternately spliced forms of phospholipase D1: activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and Rho family monomeric GTP-binding proteins and protein kinase C-$\alpha$. J. Biol. Chem. 272, 3860-3868 https://doi.org/10.1074/jbc.272.6.3860
  10. Hanna, D.E., Rethinaswamy, A., and Glover, C.V. (1995). Casein kinase II is required for cell cycle progression during G1 and G2/M in Saccharomyces cerevisiae. J. Biol. Chem. 270, 25905-25914 https://doi.org/10.1074/jbc.270.43.25905
  11. Hathaway, G.M., and Traugh, J.A. (1979). Cyclic nucleotideindependent protein kinases from rabbit reticulocytes. Purification of casein kinases. J. Biol. Chem. 254, 762-768
  12. Hui, L., Abbas, T., Pielak, R.M., Joseph, T., Bargonetti, J., and Foster, D.A. (2004). Phospholipase D elevates the level of MDM2 and suppresses DNA damage-induced increases in p53. Mol. Cell. Biol. 24, 5677-5686 https://doi.org/10.1128/MCB.24.13.5677-5686.2004
  13. Issinger, O.G. (1993). Casein kinases: pleiotropic mediators of cellular regulation. Pharmacol. Ther. 59, 1-30 https://doi.org/10.1016/0163-7258(93)90039-G
  14. Jakobi, R., and Traugh, J.A. (1992). Characterization of the phosphotransferase phosphotransferase domain of casein kinase II by site-directed mutagenesis and expression in Escherichia coli. J. Biol. Chem. 267, 23894-23902
  15. Kim, S.Y., Ahn, B.H., Min, K.J., Lee, Y.H., Joe, E.H., and Min, D.S. (2004). Phospholipase D isozymes mediate epigallocatechin gallate-induced cyclooxygenase-2 expression in astrocyte cells. J. Biol. Chem. 279, 38125-38133 https://doi.org/10.1074/jbc.M402085200
  16. Kim, T.H., Lee, J.Y., Kang, B.S., and Bae, Y.S. (2005). In vitro characterization of protein kinase CKII$\beta$ mutants defective in $\beta$-$\beta$ dimerization. Mol. Cells 19, 124-130
  17. Krippner-Heidenreich, A., Talanian, R.V., Sekul, R., Kraft, R., Thole, H., Ottleben, H., and Luscher, B. (2001). Targeting of the transcription factor Max during apoptosis: phosphorylation-regulated cleavage by caspase-5 at an unusual glutamic acid residue in position P1. Biochem. J. 358, 705-715 https://doi.org/10.1042/0264-6021:3580705
  18. Lin, W.J., Tuazon, P.T., and Traugh, J.A. (1991). Characterization of the catalytic subunit of casein kinase II expressed in Escherichia coli and regulation of activity. J. Biol. Chem. 266, 5664-5669
  19. Liscovitch, M., Czarny, M., Fiucci, G., and Tang, X. (2000). Phospholipase D: molecular and cell biology of a novel gene family. Biochem. J. 345, 401-415 https://doi.org/10.1042/0264-6021:3450401
  20. Litchfield, D.W. (2003). Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem. J. 369, 1-15 https://doi.org/10.1042/BJ20021469
  21. Min, D.S., Ahn, B.H., Rhie, D.J., Yoon, S.H., Hahn, S.J., Kim, M.S., and Jo, Y.H. (2001). Expression and regulation of phospholipase D during neuronal differentiation of PC12 cells. Neuropharmacology 41, 384-391 https://doi.org/10.1016/S0028-3908(01)00070-3
  22. Moon, I.S., Cho, S.J., Jin, I., and Walikonis, R. (2007). A simple method for combined fluorescence in situ hybridization and immunocytochemistry. Mol. Cells 24, 76-82
  23. Niefind, K., Guerra, B., Pinna, L.A., Issinger, O.G., and Schomburg, D. (1998). Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 A resolution. EMBO J. 17, 2451-2462 https://doi.org/10.1093/emboj/17.9.2451
  24. Pinna, L.A. (1990). Casein kinase 2: an 'eminence grise' in cellular regulation? Biochim. Biophys. Acta 1054, 267-284 https://doi.org/10.1016/0167-4889(90)90098-X
  25. Seldin, D.C., and Leder, P. (1995). Casein kinase II$\alpha$ transgeneinduced murine lymphoma: relation to theileriosis in cattle. Science 267, 894-897 https://doi.org/10.1126/science.7846532
  26. Shen, Y., Xu, L., and Foster, D.A. (2001). Role for phospholipase D in receptor-mediated endocytosis. Mol. Cell. Biol. 21, 595-602 https://doi.org/10.1128/MCB.21.2.595-602.2001
  27. Shin, S., Lee, Y., Kim, W., Ko, H., Choi, H., and Kim, K. (2005). Caspase-2 primes cancer cells for TRAIL-mediated apoptosis by processing procaspase-8. EMBO J. 24, 3532-3542 https://doi.org/10.1038/sj.emboj.7600827
  28. Zhang, C., Vilk, G., Canton, D.A., and Litchfield, D.W. (2002). Phosphorylation regulates the stability of the regulatory CK2$\beta$ subunit. Oncogene 21, 3754-3764 https://doi.org/10.1038/sj.onc.1205467

Cited by

  1. The C-terminal domain of PLD2 participates in degradation of protein kinase CKII β subunit in human colorectal carcinoma cells vol.44, pp.9, 2009, https://doi.org/10.5483/bmbrep.2011.44.9.572