DOI QR코드

DOI QR Code

Taurine exerts neuroprotective effects via anti-apoptosis in hypoxic-ischemic brain injury in neonatal rats

신생 흰쥐의 저산소성 허혈성 뇌손상에서 항세포사멸사를 통한 taurine의 신경보호 효과

  • Jeong, Ji Eun (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Kim, Tae Yeol (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Park, Hye Jin (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Lee, Kye Hyang (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Lee, Kyung Hoon (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Choi, Eun Jin (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Kim, Jin Kyung (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Chung, Hai Lee (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Seo, Eok Su (Dongguk University College of Medicine, Gyeongju, Gyungbook) ;
  • Kim, Woo Taek (Department of Pediatrics, School of Medicine, Catholic University of Daegu)
  • 정지은 (대구가톨릭대학교 의과대학 소아과학교실) ;
  • 김태열 (대구가톨릭대학교 의과대학 소아과학교실) ;
  • 박혜진 (대구가톨릭대학교 의과대학 소아과학교실) ;
  • 이계향 (대구가톨릭대학교 의과대학 소아과학교실) ;
  • 이경훈 (대구가톨릭대학교 의과대학 소아과학교실) ;
  • 최은진 (대구가톨릭대학교 의과대학 소아과학교실) ;
  • 김진경 (대구가톨릭대학교 의과대학 소아과학교실) ;
  • 정혜리 (대구가톨릭대학교 의과대학 소아과학교실) ;
  • 서억수 (동국대학교 의과대학 안과학교실) ;
  • 김우택 (대구가톨릭대학교 의과대학 소아과학교실)
  • Received : 2009.07.14
  • Accepted : 2009.10.11
  • Published : 2009.12.15

Abstract

Purpose:Taurine (2-aminoethanesulfonic acid) is a simple sulfur-containing amino acid. It is abundantly present in tissues such as brain, retina, heart, and skeletal muscles. Current studies have demonstrated the neuroprotective effects of taurine, but limited data are available for such effects during neonatal period. The aim of this study was to determine whether taurine could reduce hypoxic-ischemic (HI) cerebral injury via anti-apoptosis mechanism. Methods:Embryonic cortical neurons isolated from Sprague-Dawley (SD) rats at 18 days gestation were cultured in vitro. The cells were divided into hypoxia group, taurine-treated group before hypoxic insult, and taurine-treated group after HI insult. In the in vivo model, left carotid artery ligation was performed in 7-day-old SD rat pups. The pups were exposed to hypoxia, administered an injection of 30 mg/kg of taurine, and killed at 1 day, 3 days, 1 week, 2 weeks, and 4 weeks after the hypoxic insult. We compared the expressions of Bcl-2, Bax, and caspase-3 among the 3 groups by using real- time polymerase chain reaction (PCR) and western blotting. Results:The cells in the taurine-treated group before hypoxic insult, although similar in appearance to those in the normoxia group, were lesser in number. In the taurine-treated group, Bcl-2 expression increased, whereas Bax and caspase-3 expressions reduced. Conclusion:Taurine exerts neuroprotective effects onperinatal HI brain injury due to its anti-apoptotic effect. The neuroprotective effect was maximal at 1-2 weeks after the hypoxic injury.

목 적:타우린은 술폰 기를 산기로 하는 황 아미노산의 일종이며 뇌, 망막, 심장, 근육에 많이 분포되어 있다. 최근 국소적 뇌허혈에 대한 타우린의 신경보호효과에 관한 연구들이 발표되고 있으나 대부분 연구가 성인의 뇌졸중의 치료에 대한 연구이며 신생아시기의 저산소성 손상에 대한 효과를 구체적으로 연구한 바가 없다. 본 연구에서는 타우린이 저산소 상태로 유발된 뇌세포 배양과 신생 백서의 저산소성 허혈성 뇌손상에서 항세포사멸사를 통한 뇌보호 효과가 있는지를 알아보고자 실험하였다. 방 법:재태기간 18일된 태아 흰쥐의 대뇌피질 세포를 배양하여 1% $O_2$ 배양기에서 저산소 상태로 뇌세포 손상을 유도하여 저산소군, 손상 전 후 타우린 투여군($30{\mu}g/mL$)으로 나누어 정상산소군과 비교하였다. 세포사멸사와 관련을 알아보기 위해 Bcl-2, Bax, caspase-3 primer와 항체로 실시간 중합효소연쇄반응과 western blotting을 하였다. 또한, 생후 7일된 백서의 좌측 총 경동맥을 결찰한 후 저산소(8% $O_2$) 상태로 2시간 노출시켜서, 저산소성 허혈성 뇌 손상을 유발하였고, 뇌손상 전 후 30분에 타우린을 체중 kg당 30 mg을 투여하였다. 저산소성 허혈성 뇌손상 후 1일, 3일, 1주, 2주, 4주 째 뇌를 적출하여 Bcl-2, Bax, caspase-3 primer를 이용하여 실시간 중합효소연쇄반응을 하였고, 동일 항체로 western blotting하였다. 결 과:저산소로 유발된 뇌세포 배양에서 정상군에 비해 저산소군에서 뇌세포 손상이 많았고 저산소 손상전 타우린 투여군에서 뇌세포 손상이 회복되었으며 저산소 손상 후 타우린 투여군에서는 저산소 손상 전 투여군보다 회복력이 떨어졌다. 실시간 중합효소연쇄반응과 western blotting을 이용한 저산소 상태의 태아 백서 뇌세포 배양 실험뿐만 아니라 저산소성 허혈성 뇌손상 동물 모델에서도 타우린을 투여한 경우 Bcl-2의 발현은 증가하고, Bax/Bcl-2의 비율, Bax와 caspase-3의 발현은 감소함을 보였다. 결 론:본 연구에서 타우린은 주산기 저산소성 허혈성 뇌손상에서 Bcl-2 발현 감소, Bax와 caspase-3 발현 증가를 유발시켜 항 세포사멸사 기전을 통한 신경보호 역할을 하는 것을 알 수 있었다. 그리고 이것은 저산소 손상 후 1주와 2주째에 가장 효과가 있었다.

Keywords

References

  1. Lajtha A. Handbook of neurochemistry. 2nd, Vol 3. Plenum Press 1985:501-3
  2. Oja SS, Kontro P, Lahdesmaki P. Amino acids as inhibitory neurotransmitters. Prog Pharmaol 1997;1:1-119
  3. Shuaib A. The role of taurine in cerebral ischemia: studies in transient forebrain ischemia and embolic focal ischemia in rodents. Adv Exp Med Biol 2003;526:421-31
  4. French ED, Vezzani A, Whetsell WO Jr, Schwarcz R. Anti- excitotoxic actions of taurine in the rat hippocampus studied in vivo and in vitro. Adv Exp Med Biol 1986;203:349-62
  5. Trenkner E. The role of taurine and glutamate during early postnatal cerebellar development of normal and weaver mutant mice. Adv Exp Med Biol 1990;268:239-44
  6. Schurr A, Tseng MT, West CA, Rigor BM. Taurine improves the recovery of neuronal function following cerebral hypoxia: an in vitro study. Life Sci 1987;40:2059-66 https://doi.org/10.1016/0024-3205(87)90098-1
  7. Lehmann A, Hagberg H, Nystr$\ddot{o}$m B, Sandberg M, Hamberger A. In vivo regulation of extracellular taurine and other neuroactive amino acids in the rabbit hippocampus. Prog Clin Biol Res 1985;179:289-311
  8. Sun GC, Wang D, Tao C. Effects of taurine on the levels of prostaglandins in brain tissue during cerebral ischemia/reperfusion in rats. Chinese Pharmaceutical J 2000;35:815-7
  9. Watson RW, Redmond HP, Wang JH, Bouchier-Hayes D. Mechanisms involved in sodium arsenite-induced apoptosis of human neutrophils. J Leukoc Biol 1996;60:625-32 https://doi.org/10.1002/jlb.60.5.625
  10. Wang JH, Redmond HP, Watson RW, Condron C, Bouchier- Hayes D. The beneficial effect of taurine on the prevention of human endothelial cell death. Shock 1996;6:331-8 https://doi.org/10.1097/00024382-199611000-00006
  11. Refik Mas M, Comert B, Oncu K, Vural SA, Akay C, Tasci I, et al. The effect of taurine treatment on oxidative stress in experimental liver fibrosis. Hepatol Res 2004;28:207-15 https://doi.org/10.1016/j.hepres.2003.11.012
  12. Dell'Anna ME, Calzolari S, Molinari M, Iuvone L, Calimici R. Neonatal anoxia induces transitory hyperactivity, permanent spatial memory deficits and CA1 cell density reduction in developing rats. Behav Brain Res 1991;45:125-34 https://doi.org/10.1016/S0166-4328(05)80078-6
  13. Ferriero DM, Holtzman DM, Black SM. Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic-ischemic injury. Neurobiol Dis 1996;3:64-71 https://doi.org/10.1006/nbdi.1996.0006
  14. Levine S. Anoxic-ischemic encephalopathy in rats. Am J Pathol 1960;36:1-17
  15. Pulsinelli WA, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 1982;11:491-8 https://doi.org/10.1002/ana.410110509
  16. Rice JE 3rd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 1981;9:131-41 https://doi.org/10.1002/ana.410090206
  17. Alimi CR, Yundt KD, Wheeler ME, Rosenbaum J, Altman DI, Powers WJ. Neonatal cerebral blood flow (PET) and childhood relational memory performance. Soc Neurosci Abstr 1997;23:490
  18. Rosenbaum JL, Almli CR, Yundt KD, Altman DI, Powers WJ. Higher neonatal cerebral blood flow correlates with worse childhood neurological outcome. Neurology 1997;49:1035-41 https://doi.org/10.1212/WNL.49.4.1035
  19. Vanucci RC. Experimental biology of cerebral hypoxia-ischemia: Relation to perinatal brain damage. Pediatr Res 1990; 27:317-26 https://doi.org/10.1203/00006450-199004000-00001
  20. Vargha-Khadem F, Gadian DG, Watkins KE, Connelly W, Van Paesschen W, Mishkin M. Differential effects of early hippocampal pathology on episodic and semantic memory. Science 1997;277:376-80 https://doi.org/10.1126/science.277.5324.376
  21. Volpe JJ. Neurology of the Newborn, 3rd ed. Philadelphia: WB Saunders, 1995
  22. Ashwal S, Pearce WJ. Animal models of neonatal stroke. Curr Opin Pediatr 2001;13:506-16 https://doi.org/10.1097/00008480-200112000-00003
  23. Brewer GJ. Isolation and culture of adult rat hippocampal neurons. J Neurosci Methods 1997;71:143-55 https://doi.org/10.1016/S0165-0270(96)00136-7
  24. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63 https://doi.org/10.1016/0022-1759(83)90303-4
  25. Franconi F, Bennardini F, Mattana A, Miceli M, Ciuti M, Mian M, et al. Plasma and platelet taurine are reduced in subjects with insulin-dependent diabetes mellitus: effects of taurine supplementation. Am J Clin Nutr 1995;61:1115-9 https://doi.org/10.1093/ajcn/61.5.1115
  26. Bouckenooghe T, Remacle C, Reusens B. Is taurine a functional nutrient? Curr Opin Clin Nutr Metab Care 2006;9:728- 33 https://doi.org/10.1097/01.mco.0000247469.26414.55
  27. Stapleton PP, O'Flaherty L, Redmond HP, Bouchier-Hayes DJ. Host defense-a role for the amino acid taurine? JPEN J Parenter Enteral Nutr 1998;22:42-8 https://doi.org/10.1177/014860719802200142
  28. Huxtable RJ. Physiological actions of taurine. Physiol Rev 1992;72:101-63 https://doi.org/10.1152/physrev.1992.72.1.101
  29. Northington FJ, Ferriero DM, Martin LJ. Neurodegeneration in the thalamus following neonatal hypoxia-ischemia is programmed cell death. Dev Neurosci 2001;23:186-91 https://doi.org/10.1159/000046141
  30. Fariello RG, Golden GT, Pisa M. Homotaurine (3 aminopropanesulfonic acid; 3APS) protects from the convulsant and cytotoxic effect of systemically administered kainic acid. Neurology 1982;32:241-5 https://doi.org/10.1212/WNL.32.3.241
  31. Matsumoto K, Ueda S, Hashimoto T, Kuriyama K. Ischemic neuronal injury in the rat hippocampus following transient forebrain ischemia: evaluation using in vivo microdialysis. Brain Res 1991;543:236-42 https://doi.org/10.1016/0006-8993(91)90033-R
  32. Boldyrev AA, Johnson P, Wei Y, Tan Y, Carpenter DO. Carnosine and taurine protect rat cerebellar granular cells from free radical damage. Neurosci Lett 1999;263:169-72 https://doi.org/10.1016/S0304-3940(99)00150-0
  33. Uchiyama-Tsuyuki Y, Araki H, Yae T, Otomo S. Changes in the extracellular concentrations of amino acids in the rat striatum during transient focal cerebral ischemia. J Neurochem 1994;62:1074-8 https://doi.org/10.1046/j.1471-4159.1994.62031074.x
  34. Matsumoto K, Lo EH, Pierce AR, Halpern EF, Newcomb R. Secondary elevation of extracellular neurotransmitter amino acids in the reperfusion phase following focal cerebral ischemia. J Cereb Blood Flow Metab 1996;16:114-24 https://doi.org/10.1097/00004647-199601000-00014
  35. Simpson RK Jr, Robertson CS, Goodman JC. Spinal cord ischemia-induced elevation of amino acids: extracellular measurement with microdialysis. Neurochem Res 1990;15:635-9 https://doi.org/10.1007/BF00973755
  36. Lekieffre D, Callebert J, Plotkine M, Boulu RG. Concomitant increases in the extracellular concentrations of excitatory and inhibitory amino acids in the rat hippocampus during forebrain ischemia. Neurosci Lett 1992;137:78-82 https://doi.org/10.1016/0304-3940(92)90303-O
  37. Ooboshi H, Sadoshima S, Yao H, Ibayashi S, Matsumoto T, Uchimura H, et al. Ischemia-induced release of amino acids in the hippocampus of aged hypertensive rats. J Cereb Blood Flow Metab 1995;15:227-34 https://doi.org/10.1038/jcbfm.1995.28
  38. Shimada N, Graf R, Rosner G, Heiss WD. Ischemia-induced accumulation of extracellular amino acids in cerebral cortex, white matter, and cerebrospinal fluid. J Neurochem 1993;60: 66-71 https://doi.org/10.1111/j.1471-4159.1993.tb05823.x
  39. Mankovskaya IN, Serebrovskaya TV, Swanson RJ, Vavilova GL, Kharlamova ON. Mechanisms of taurine antihypoxic and antioxidant action. High Alt Med Biol 2000;1:105-10 https://doi.org/10.1089/15270290050074242
  40. Nakajima W, Ishida A, Lange MS, Gabrielson KL, Wilson MA, Martin LJ, et al. Apoptosis has a prolonged role in the neurodegeneration after hypoxic ischemia in the newborn rat. J Neurosci 2000;20:7994-8004

Cited by

  1. Reversal of the Caspase-Dependent Apoptotic Cytotoxicity Pathway by Taurine from Lycium barbarum (Goji Berry) in Human Retinal Pigment Epithelial Cells: Potential Benefit in Diabetic Retinopathy vol.2012, pp.None, 2012, https://doi.org/10.1155/2012/323784
  2. Effects of Dizocilpine (MK-801) via Up-modulation of N-methyl-D-aspartate (NMDA) Receptors on Hypoxic-Ischemic Brain Injury in Neonatal Rats vol.25, pp.3, 2009, https://doi.org/10.14734/kjp.2014.25.3.166
  3. Chinese herbal drugs for the treatment of diabetic retinopathy vol.69, pp.3, 2017, https://doi.org/10.1111/jphp.12683
  4. Expedition into Taurine Biology: Structural Insights and Therapeutic Perspective of Taurine in Neurodegenerative Diseases vol.10, pp.6, 2009, https://doi.org/10.3390/biom10060863