DOI QR코드

DOI QR Code

Methods for rapid identification of a functional single-chain variable fragment using alkaline phosphatase fusion

  • Lee, Kyung-Woo (IG Therapy Co.) ;
  • Hur, Byung-Ung (Div. of Molecular & Medical Biotechnology, College of Bioscience and Biotechnology, Kangwon National University) ;
  • Song, Suk-Yoon (Div. of Molecular & Medical Biotechnology, College of Bioscience and Biotechnology, Kangwon National University) ;
  • Choi, Hyo-Jung (Div. of Molecular & Medical Biotechnology, College of Bioscience and Biotechnology, Kangwon National University) ;
  • Shin, Sang-Hoon (Div. of Molecular & Medical Biotechnology, College of Bioscience and Biotechnology, Kangwon National University) ;
  • Cha, Sang-Hoon (IG Therapy Co.)
  • Published : 2009.11.30

Abstract

The generation of functional recombinant antibodies from hybridomas is necessary for antibody engineering. However, this is not easily accomplished due to high levels of aberrant heavy and light chain mRNAs, which require a highly selective technology that has proven complicated and difficult to operate. Herein, we attempt to use an alkaline phosphate (AP)-fused form of single-chain variable fragment (scFv) for the simple identification of a hybridoma-derived, functional recombinant antibody. As a representative example, we cloned the scFv gene from a hybridoma-producing mouse IgG against branched-chain keto acid dehydrogenase complex-E2 (BCKD-E2) into an expression vector containing an in-frame phoA gene. Functional recombinant antibodies were easily identified by conventional enzyme-linked immunosorbent assay (ELISA) by employing scFv-AP fusion protein, which also readily serves as a valuable immuno-detective reagent.

Keywords

References

  1. Morino, K., Katsumi, H., Akahori, Y., Iba, Y., Shinohara, M., Ukai, Y., Kohara, Y. and Kurosawa, Y. (2001) Antibody fusions with fluorescent proteins: a versatile reagent for profiling protein expression. J. Immunol. Methods 257, 175-184 https://doi.org/10.1016/S0022-1759(01)00462-8
  2. Huston, J. S., McCartney, J., Tai, M. S., Mottola-Hartshorn, C., Jin, D., Warren, F., Keck, P. and Oppermann, H. (1993) Medical applications of single-chain antibodies. Intern. Rev. Immunol. 10, 195-217 https://doi.org/10.3109/08830189309061696
  3. Winter, G., Griffiths, A. D., Hawkins, R. E. and Hoogenboom, H. R. (1994) Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433-455 https://doi.org/10.1146/annurev.iy.12.040194.002245
  4. Vaughan, T. J., Williams, A. J., Pritchard, K., Osbourn, J. K., Pope, A. R., Earnshaw, J. C., McCafferty, J., Hodits, R. A., Wilton, J. and Johnson, K. S. (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nature. Biotechnol. 14, 309-314 https://doi.org/10.1038/nbt0396-309
  5. Xiang, J., Zhong, Z., Deng, N., Zhong, Z. and Yang, H. (2005) Screening of the Antigen epitopes of basic fibroblast growth factor by phage display. BMB Reports 38, 290-293 https://doi.org/10.5483/BMBRep.2005.38.3.290
  6. Nicholls, P. J., Johnson, V. G., Blanford, M. D. and Andrew, S. M. (1993) An improved method for generating single- chain antibodies from hybridomas. J. Immunol. Methods 165, 81-91 https://doi.org/10.1016/0022-1759(93)90109-K
  7. Kutemeier, G., Harloff, C. and Mocikat, R. (1992) Rapid isolation of immunoglobulin variable genes from cell lysates of rat hybridomas by polymerase chain reaction. Hybridoma 11, 23-32 https://doi.org/10.1089/hyb.1992.11.23
  8. Hua, X., Yuliang R., Jinliang, X., Xiangmin, Y., Yn, L. and Zhinan, C. (2005) Expression vectors for human-mouse chimeric antibodies. BMB Reports 38, 414-419 https://doi.org/10.5483/BMBRep.2005.38.4.414
  9. Krebber, A., Bornhauser, S., Burmester, J., Honegger, A., Willuda, J., Bosshard, H. R. and Pluckthun, A. (1997) Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J. Immunol. Methods 201, 35-55 https://doi.org/10.1016/S0022-1759(96)00208-6
  10. Yu, Z. C., Ding, J., Nie, Y. Z., Fan, D. M. and Zhang, X. Y. (2001) Preparation of single chain variable fragment of MG (7) mAb by phage display technology. World J. Gastroenterol. 7, 510-514 https://doi.org/10.3748/wjg.v7.i4.510
  11. Rodenburg, C. M., Mernaugh, R., Bilbao, G. and Khazaeli, M. B. (1998) Production of a single chain anti-CEA antibody from the hybridoma cell line T84.66 using a modified colony-lift selection procedure to detect antigen- positive ScFv bacterial clones. Hybridoma 17, 1-8 https://doi.org/10.1089/hyb.1998.17.1
  12. Courtney, B. C., Williams, K. C. and Schlager, J. J. (1995) A phage display vector with improved stability, applicability and ease of manipulation. Gene 165, 139-140 https://doi.org/10.1016/0378-1119(95)00526-C
  13. McCafferty, J. (1996) Phage display: factors affecting panning efficiency; in Phage Display of Peptides and Proteins, a Laboratory Manual, Kay, B. K., Winter, J. and Mc Cafferty, J. (eds.), pp. 261-276, Academic Press, San Diego, USA
  14. Oh, M., Joo, H., Hur, B., Jeong, Y. and Cha, S. (2007) Enhancing phage display of antibody fragments using gIII-amber suppression. Gene 386, 81-89 https://doi.org/10.1016/j.gene.2006.08.009
  15. Skerra, A., Dreher, M. L. and Winter G. (1991) Filter screening of antibody Fab fragments secreted from individual bacterial colonies: specific detection of antigen binding with a two-membrane system. Anal. Biochem. 196, 151-155 https://doi.org/10.1016/0003-2697(91)90131-C
  16. Dreher, M. L., Gherardi, E., Skerra, A. and Milstein, C. (1991) Colony assays for antibody fragments expressed in bacteria. J. Immunol. Methods 139, 197-205 https://doi.org/10.1016/0022-1759(91)90189-M
  17. Suzuki, C., Ueda, H., Suzuki, E. and Nagamune, T. (1997) Construction, bacterial expression, and characterization of hapten-specific single-chain Fv and alkaline phosphatase fusion protein. J. Biochem. 122, 322-329 https://doi.org/10.1093/oxfordjournals.jbchem.a021756
  18. Rau, D., Kramer, K. and Hock, B. (2002) Single-chain Fv antibody-alkaline phosphatase fusion proteins produced by one-step cloning as rapid detection tools for ELISA. J. Immunoassay Immunochem. 23, 129-143 https://doi.org/10.1081/IAS-120003657
  19. Fregeau, D. R., Davis, P. A., Danner, D. J., Ansari, A., Coppel, R. L., Dickson, E. R. and Gershwin, M. E. (1989) Antimitochondrial antibodies of primary biliary cirrhosis recognize dihydrolipoamide acyltransferase and inhibit enzyme function of the branched chain alpha-ketoacid dehydrogenase complex. J. Immunol. 142, 3815-3820
  20. Kipriyanov, S. M., Kupriyanova, O. A., Little, M. and Moldenhauer, G. (1996) Rapid detection of recombinant antibody fragments directed against cell-surface antigens by flow cytometry. J. Immunol. Methods 196, 51-62 https://doi.org/10.1016/0022-1759(96)00115-9
  21. Mousli, M., Goyffon, M. and Billiald, P. (1998) Production and characterization of a bivalent single chain Fv/alkaline phosphatase conjugate specific for the hemocyanin of the scorpion Androctonus australis. Biochim. Biophys. Acta. 1425, 348-360 https://doi.org/10.1016/S0304-4165(98)00090-7
  22. Yamanaka, H. I., Kirii, Y. and Ohmoto, H. (1995) An improved phage display antibody cloning system using newly designed PCR primers optimized for Pfu DNA polymerase. J. Biochem. 117, 1218-1227 https://doi.org/10.1093/oxfordjournals.jbchem.a124847
  23. Martin, C. D., Rojas, G., Mitchell, J. N., Vincent, K. J., Wu, J., McCafferty, J. and Schofield, D. J. (2006) A simple vector system to improve performance and utilisation of recombinant antibodies. BMC Biotechnol. 6, 46 https://doi.org/10.1186/1472-6750-6-46
  24. Gardberg, A. S., Dice, L. T., Ou, S., Rich, R. L., Helmbrecht, E., Ko, J., Wetzel, R., Myszka, D. G., Patterson, P. H. and Dealwis, C. (2007) Molecular basis for passive immunotherapy of Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A. 104, 15659-15664 https://doi.org/10.1073/pnas.0705888104
  25. Collet, T. A., Roben, P., O'Kennedy, R., Barbas, C. F. 3rd, Burton, D. R. and Lerner, R. A. (1992) A binary plasmid system for shuffling combinatorial antibody libraries. Proc. Natl. Acad. Sci. U.S.A. 89, 10026-10030 https://doi.org/10.1073/pnas.89.21.10026
  26. Kim, D., Kim, S., An, J., Lee, S., Jang, S., Won, M., Kang, T., Chung, K., Jung, H., Cho, S., Choi, J., Park, J., Eum, W. and Choi, S. (2006) Expression, Purification and Transduction of PEP-1-Botulinum Neurotoxin Type A (PEP-1-BoNT/A) into Skin. BMB Reports 39, 642-647 https://doi.org/10.5483/BMBRep.2006.39.5.642
  27. Choi, S., Kim S., An, J., Lee, S., Kim, D., Won, M., Kang, T., Park, J., Eum, W., Kim, J. and Choi, S. (2006) Immunohistochemical studies of human ribosomal protein S3 (rpS3). BMB Reports 39, 208-215 https://doi.org/10.5483/BMBRep.2006.39.2.208
  28. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold spring Harbor Laboratory Press, New York, USA

Cited by

  1. An affinity improved single-chain antibody from phage display of a library derived from monoclonal antibodies detects fumonisins by immunoassay vol.867, 2015, https://doi.org/10.1016/j.aca.2015.02.014
  2. Identification of two aberrant transcripts derived from a hybridoma with amplification of functional immunoglobulin variable genes vol.7, pp.5, 2010, https://doi.org/10.1038/cmi.2010.33
  3. Immunodiagnostic reagents using llama single domain antibody–alkaline phosphatase fusion proteins vol.417, pp.2, 2011, https://doi.org/10.1016/j.ab.2011.06.012
  4. Generation of scFv specific to human VEGFR-3 from the neutralizing mAb BDD073 vol.28, pp.1, 2015, https://doi.org/10.1093/protein/gzu049