DOI QR코드

DOI QR Code

Stage-specific Expression of Lanosterol 14${\alpha}$-Demethylase in Mouse Oocytes in Relation to Fertilization and Embryo Development Competence

  • Song, Xiaoming (State Key Laboratory for Agrobiotechnology, College of Biological Sciences China Agricultural University) ;
  • Ouyang, Hong (State Key Laboratory for Agrobiotechnology, College of Biological Sciences China Agricultural University) ;
  • Tai, Ping (State Key Laboratory for Agrobiotechnology, College of Biological Sciences China Agricultural University) ;
  • Chen, Xiufen (State Key Laboratory for Agrobiotechnology, College of Biological Sciences China Agricultural University) ;
  • Xu, Baoshan (State Key Laboratory for Agrobiotechnology, College of Biological Sciences China Agricultural University) ;
  • Yan, Jun (State Key Laboratory for Agrobiotechnology, College of Biological Sciences China Agricultural University) ;
  • Xia, Guoliang (State Key Laboratory for Agrobiotechnology, College of Biological Sciences China Agricultural University) ;
  • Zhang, Meijia (State Key Laboratory for Agrobiotechnology, College of Biological Sciences China Agricultural University)
  • Received : 2008.02.27
  • Accepted : 2008.07.08
  • Published : 2009.03.01

Abstract

Follicular fluid meiosis-activating sterol (FF-MAS) has been suggested as a positive factor which could improve the oocyte quality and subsequent embryo development after in vitro fertilization. However, FF-MAS is a highly lipophilic substance and is hard to detect in studying the relationship between MAS and quality of oocyte maturation. The present study focused on the expression of lanosterol 14${\alpha}$-demethylase (LDM), a key enzyme that converts lanosterol to FF-MAS, on mouse oocyte maturation and its potency on development. LDM expression was strong in gonadotropin-primed germinal vesicle stage oocytes, weak after germinal vesicle breakdown (GVBD), and then strong in MII stage oocytes. The LDM-specific inhibitor azalanstat significantly inhibited oocyte fertilization (from 79.4% to 68.3%, p<0.05). Also, azalanstat (5 to 50 ${\mu}M$) decreased the percentage of blastocyst development dosedependently (from 78.7% to 23.4%, p<0.05). The specific inhibition of sterol ${\Delta}14$-reductase and ${\Delta}7$-reductase by AY9944 accumulates FF-MAS and could increase blastocyst development rates. Additionally, in the AY9944 group, the rate of inner cell mass (ICM)/ total cells was similar to that of in vivo development, but the rate was significantly decreased in azalanstat treatment. In conclusion, LDM, the key enzyme of FF-MAS production, may play an important role in fertilization and early development of the mouse embryo, especially in vitro.

Keywords

References

  1. Avery, B. and T. Greve. 2000. Effects of ethanol and dimethylsulphoxide on nuclear and cytoplasmic maturation of bovine cumulus-oocyte complexes. Mol. Reprod. Dev. 55:438-445 https://doi.org/10.1002/(SICI)1098-2795(200004)55:4<438::AID-MRD12>3.0.CO;2-Y
  2. Abeydeera, L. R. 2001. In vitro fertilization and embryo development in pigs. Reprod. 58(Suppl. 1):159-173
  3. Burton, P. M., D. C. Swinney, R. Heller, B. Dunlap, M. Chiou, E. Malonzo, J. Haller, K. A. Walker, A. Salari. and S. Murakami. 1995. Azalanstat (RS-21607), a lanosterol 14 alphademethylase inhibitor with cholesterol-lowering activity. Biochem. Pharmacol. 50:529-544 https://doi.org/10.1016/0006-2952(95)00152-P
  4. Byskov, A. G., C. Y. Andersen and L. Leonardsen. 2002. Role of meiosis activating sterols, MAS, in induced oocyte maturation. Mol. Cell. Endocrinol. 187:189-196 https://doi.org/10.1016/S0303-7207(01)00707-9
  5. Byskov, A. G., C. Y. Andersen, L. Nordholm, H. Thogersen, G. Xia, O. Wassmann, J. V. Andersen, E. Guddal and T. Roed. 1995. Chemical structure of sterols that activate oocyte meiosis. Nature 374:559-562 https://doi.org/10.1038/374559a0
  6. Cao, X., S. H. Pomerantz, M. Popliker and A. Tsafriri. 2004. Meiosis-activating sterol synthesis in rat preovulatory follicle: is it involved in resumption of meiosis? Biol. Reprod. 71:1807-1812 https://doi.org/10.1095/biolreprod.104.031773
  7. Donnay, I., I. Faerge, C. Grondahl, B. Verhaeghe, H. Sayoud, N. Ponderato, C. Galli and G. Lazzari. 2004. Effect of prematuration, meiosis activating sterol and enriched maturation medium on the nuclear maturation and competence to development of calf oocytes. Theriogenol. 62:1093-1107 https://doi.org/10.1016/j.theriogenology.2003.12.019
  8. Fink, M., J. Acimovic, T. Rezen, N. Tansek and D. Rozman. 2005. Cholesterogenic lanosterol 14alpha-demethylase (CYP51) is an immediate early response gene. Endocrinol. 146:5321-5331 https://doi.org/10.1210/en.2005-0781
  9. Grondahl, C., J. Breinholt, P. Wahl, A. Murray, T. H. Hansen, I. Faerge, C. E. Stidsen, K. Raun and C. Hegele-Hartung. 2003. Physiology of meiosis-activating sterol: endogenous formation and mode of action. Hum. Reprod. 18:122-129 https://doi.org/10.1093/humrep/deg028
  10. Hamamah, S. 2005. Oocyte and embryo quality: is their morphology a good criterion? J. Gynecol. Obstet. Biol. Reprod. 34:38-41
  11. Hegele-Hartung, C., J. Kuhnke, M. Lessl, C. Grondahl, J. Ottesen, H. M. Beier, S. Eisner and U. Eichenlaub-Ritter. 1999. Nuclear and cytoplasmic maturation of mouse oocytes after treatment with synthetic meiosis-activating sterol in vitro. Biol. Reprod. 61:1362-1372 https://doi.org/10.1095/biolreprod61.5.1362
  12. Jang, H. Y., Y. S. Jung, H. T. Cheong, J. T. Kim, C. K. Park, H. S. Kong, H. K. Lee and B. K. Yang. 2008. Effects of cell status of bovine oviduct epithelial cell (BOEC) on the development of bovine IVM/IVF embryos and gene expression in the BOEC used or not used for the embryo culture. Asian-Aust. J. Anim. Sci. 21:980-987
  13. Kim, C. K., K. I. Jeon, D. M. Lim, T. N. Johng, J. M. Trzaskos, J. L. Gaylor and Y. K. Paik. 1995. Cholesterol biosynthesis from lanosterol: regulation and purification of rat hepatic sterol 14-reductase. Biochim. Biophys. Acta. 1259:39-48 https://doi.org/10.1016/0005-2760(95)00128-Y
  14. Lau, C. F., R. Vogel, G. Obe and H. Spielmann. 1991. Embryologic and cytogenetic effects of ethanol on preimplantation mouse embryos in vitro. Reprod. Toxicol. 5:405-410 https://doi.org/10.1016/0890-6238(91)90003-X
  15. Loft, A., C. Bergh, S. Ziebe, K. Lundin, A. Nyboe Andersen, M. Wikland, H. Kim and J. C. Arce. 2004. A randomized, doubleblind, controlled trail of the effect of adding follicular fluid meiosis activating sterol in an ethanol formulation to donated human cumulus-enclosed oocytes before fertilization. Fertil. Steril. 81:42-50 https://doi.org/10.1016/j.fertnstert.2003.06.014
  16. Loft, A., S. Ziebe, K. Erb, P. E. Rasmussen, I. Agerholm, B. Hauge, M. Bungum, L. Bungum, C. Gr$\varnothing$ndahl and K. Lyby. 2005. Impact of follicular-fluid meiosis-activating sterol in an albumin-based formulation on the incidence of human preembryos with chromosome abnormalities. Fertil Steril. 84(Suppl. 2):1269-1276
  17. Leonardsen, L., M. Stromstedt, D. Jacobsen, K. S. Kristensen, M. Baltsen, C. Y. Andersen and A. G. Byskov. 2000. Effect of inhibition of sterol delta 14-reductase on accumulation of meiosis-activating sterol and meiotic resumption in cumulusenclosed mouse oocytes in vitro. J. Reprod. Fertil. 118:171-179 https://doi.org/10.1530/reprod/118.1.171
  18. Ma, S. F., X. Y. Liu, D. Q. Miao, Z. B. Han, X. Zhang, Y. L. Miao, R. Yanagimachi and J. H. Tan. 2005. Parthenogenetic activation of mouse oocytes by strontium chloride: a search for the best conditions. Theriogenol. 64:1142-1157 https://doi.org/10.1016/j.theriogenology.2005.03.002
  19. Marin Bivens, C. L., C. Grondahl, A. Murray, T. Blume, Y. Q. Su and J. J. Eppig. 2004a. Meiosis-activating sterol promotes the metaphase I to metaphase II transition and preimplantation developmental competence of mouse oocytes maturing in vitro. Biol. Reprod. 70:1458-1464 https://doi.org/10.1095/biolreprod.103.026351
  20. Marin Bivens, C. L., B. Lindenthal, M. J. O'Brien, K. Wigglesworth, T. Blume, C. Grondahl and J. J. Eppig. 2004b. A synthetic analogue of meiosis-activating sterol (FF-MAS) is a potent agonist promoting meiotic maturation and preimplantation development of mouse oocytes maturing in vitro. Hum. Reprod. 19:2340-2344 https://doi.org/10.1093/humrep/deh436
  21. Nicolson, G. L., R. Yanagimachi and H. Yanagimachi. 1975. Ultrastructural localization of lectin-binding sites on the zonae pellucidae and plasma membranes of mammalian eggs. J. Cell. Biol. 66:263-274 https://doi.org/10.1083/jcb.66.2.263
  22. Quinn, P., C. Barros and D. G. Whittingham. 1982. Preservation of hamster oocytes to assay the fertilizing capacity of human spermatozoa. J. Reprod. Ferti. 66:161-168 https://doi.org/10.1530/jrf.0.0660161
  23. Rozman, D., M. Cotman and R. Frangez. 2002. Lanosterol 14alpha-demethylase and MAS sterols in mammalian gametogenesis. Mol. Cell. Endocrinol. 187:179-187 https://doi.org/10.1016/S0303-7207(01)00693-1
  24. Rozman, D., M. Seliskar, M. Cotman and M. Fink. 2005. Precholesterol precursors in gametogenesis. Mol. Cell. Endocrinol. 234:47-56 https://doi.org/10.1016/j.mce.2004.11.009
  25. Sirard, M. A., H. M. Florman, M. L. Leibfried-Rutledge, F. L. Barnes, M. L. Sims and N. L. First. 1989. Timing of nuclear progression and protein synthesis necessary for meiotic maturation of bovine oocytes. Biol. Reprod. 40:1257-1263 https://doi.org/10.1095/biolreprod40.6.1257
  26. Swinney, D. C., So, O. Y., D. M. Watson, P. W. Berry, A. S. Webb, D. J. Kertesz, E. J. Shelton, P. M. Burton and K. A. Walker. 1994. Selective inhibition of mammalian lanosterol 14 alphademethylase by RS-21607 in vitro and in vivo. Biochem. 33:4702-4713 https://doi.org/10.1021/bi00181a030
  27. Tosti, E., R. Boni and A. Cuomo. 2002. Fertilization and activation currents in bovine oocytes. Reprod. 124:835-846 https://doi.org/10.1530/rep.0.1240835
  28. Vaknin, K. M., S. Lazar, M. Popliker and A. Tsafriri. 2001. Role of meiosis-activating sterols in rat oocyte maturation: effects of specific inhibitors and changes in the expression of lanosterol 14alpha-demethylase during the preovulatory period. Biol. Reprod. 64:299-309 https://doi.org/10.1095/biolreprod64.1.299
  29. Wang, C., H. Xie, X. Song, G. Ning, J. Yan, X. Chen, B. Xu, H. Ouyang and G. Xia. 2006. Lanosterol 14alpha-demethylase expression in the mouse ovary and its participation in cumulus-enclosed oocyte spontaneous meiotic maturation in vitro. Theriogenol. 66:1156-1164 https://doi.org/10.1016/j.theriogenology.2006.01.065
  30. Xie, H., G. Xia, A. G. Byskov, C. Y. Andersen, S. Bo and Y. Tao. 2004. Roles of gonadotropins and meiosis-activating sterols in meiotic resumption of cultured follicle-enclosed mouse oocytes. Mol. Cell. Endocrinol. 218:155-163 https://doi.org/10.1016/j.mce.2003.11.030
  31. Yang, J., M. Fu, S. Wang, X. Chen, G. Ning, B. Xu, Y. Ma, M. Zhang and G. Xia. 2008. An antisense oligodeoxynucleotide to the LH receptor attenuates FSH-induced oocyte maturation in mice. Asian-Aust. J. Anim. Sci. 21:972-979
  32. Kim, C. K., K. I. Jeon, D. M. Lim, T. N. Johng, J. M. Trzaskos, J. L. Gaylor and Y. K. Paik. 1995. Cholesterol biosynthesis from lanosterol: regulation and purification of rat hepatic sterol 14-reductase. Biochim. Biophys. Acta. 1259:39-48 https://doi.org/10.1016/0005-2760(95)00128-Y