DOI QR코드

DOI QR Code

Arabidopsis AMY1 expressions and early flowering mutant phenotype

  • Jie, Wang (Institute of Life Science and Technology, Hunan University) ;
  • Dashi, Yu (Institute of Life Science and Technology, Hunan University) ;
  • XinHong, Guo (Institute of Life Science and Technology, Hunan University) ;
  • Xuanming, Liu (Institute of Life Science and Technology, Hunan University)
  • Published : 2009.02.28

Abstract

The homozygous T-DNA mutant of the AMY1 gene in Arabidopsis was identified and importantly, shown to cause an early flowering phenotype. We found that the disruption of AMY1 enhanced expression of CO and FT. The expression analyses of genes related to starch metabolism revealed that expression of the AGPase small subunit APS1 in the wild type was higher than in the amy1 mutant. However, there were no significant differences in expression levels of the AGPase large subunit genes ApL1, AMY2, or AMY3 between wild type and the amy1 mutant. Expression profiling showed that AMY1 was highly expressed in leaves, stems, and flowers, and expressed less in leafstalks and roots. Furthermore, the level of AMY1 mRNA was highly elevated with age and in senescing leaves. RT-PCR analyses showed that the expression of AMY1 was induced by heat shock, GA, and ABA, while salt stress had no apparent effect on its expression.

Keywords

References

  1. Mitsui, T., Ueki. Y. and Igaue, I. (1993) Biosynthesis and secretion of $\alpha$-amylase by rice suspension- cultured cells: Purification and characterization of $\alpha$-amylase isozyme H. Plant Physiol. Biochem. 31, 863-874
  2. Lloyd, J. R, Kossmann, J. and Ritte, G. (2005) Leaf starch degradation comes out of the shadows. Trends Plant Sci. 10, 130-137 https://doi.org/10.1016/j.tplants.2005.01.001
  3. Nakai, K. and Kanehisa, M. (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14, 897-911 https://doi.org/10.1016/S0888-7543(05)80111-9
  4. Emanuelsson, O., Nielsen, H., Brunak, S. and von Heijne, G. (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300, 1005-1016 https://doi.org/10.1006/jmbi.2000.3903
  5. Doyle, E. A., Lane, A. M., Sides, J. M., Mudgett, M, B. and Monroe, J. D. (2007) An a-amylase (At4g25000) in Arabidopsis leaves is secreted and induced by biotic and abiotic stress. Plant Cell Environ. 30, 388-398 https://doi.org/10.1111/j.1365-3040.2006.01624.x
  6. Stanley, D., Fitzgerald, A. M., Farnden, K. J. F. and MacRae, E. A. (2002) Characterisation of putative a-amylases from apple (Malus domestica) and Arabidopsis thaliana. Biologia. Bratislava. 11, 137-148
  7. Beers. E. P., Duke, S. H. (1988) Localization of a-amylase in the apoplast of pea (Pisum sativum L.) stems. Plant Physiol. 87, 799-802 https://doi.org/10.1104/pp.87.4.799
  8. Commuri, P. D. and Duke, S. H. (1997) Apoplastic a-amylase in pea is enhanced by heat stress. Plant Cell Physiol. 38, 625-630 https://doi.org/10.1093/oxfordjournals.pcp.a029213
  9. Saeed, M. and Duke, S. H. (1990) Amylases in pea tissue with reduced chloroplast density and/or function. Plant Physiol. 94, 1813-1819 https://doi.org/10.1104/pp.94.4.1813
  10. Saeed, M. and Duke, S. H. (1988) Chloroplastic regulation of apoplastic a-amylase activity in pea seedlings. Plant Physiol. 93, 131-140 https://doi.org/10.1104/pp.93.1.131
  11. Preiss, J. (1988). Biosynthesis of starch and its regulation. In The Biochemistry of Plants, Vol. 14, J. Preiss, ed (San Diego, CA: Academic Press), pp. 181-254
  12. Martin, C. and Smith, A. M. (1995). Starch biosynthesis. Plant Cell 7, 971-985 https://doi.org/10.1105/tpc.7.7.971
  13. Smith, A. M., Denyer, K., and Martin, C. (1997) The synthesis of the starch granule. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 67-87 https://doi.org/10.1146/annurev.arplant.48.1.67
  14. Lin, T. P., Caspar, T., Somerville, C. R. and Preiss, J. (1998) A starch deficient mutant of Arabidopsis thaliana with low ADP glucose pyrophosphorylase activity lacks one of the two subunits of the enzyme. Plant Physiol. 88, 1175-1181 https://doi.org/10.1104/pp.88.4.1175
  15. Sokolov, L. N., Dejardin, A., Kleczkowski, L. A. (1998) Sugars and light/dark exposure trigger differential regulation of ADP-glucose pyrophosphorylase genes in Arabidopsis thaliana (thale cress). Biochem. J. 336, 681-687 https://doi.org/10.1042/bj3360681
  16. Wang, S. M., Chu, B., Lue, W. L., Yu, T. S., Eimert, K. and Chen, J. (1997) adg2-1 represents a missense mutation in the ADPG pyrophosphorylase large subunit gene of Arabidopsis thalian. Plant J. 11, 1121-1126 https://doi.org/10.1046/j.1365-313X.1997.11051121.x
  17. Yu, T. S., Zeeman, S. C., Thorneycroft, D., Fulton, D. C., Dunstan, H., Lue, W. L., Hegemann, B., Tung, S. Y., Umemoto, T., Chapple, A., Tsai, D. L., Wang, S. M., Smith, A. M., Chen, J. C. and Smith, S. M. (2005) a-Amylase is not required for breakdown of transitory starch in Arabidopsis leaves. J. Biol. Chem. 280, 9773-9779 https://doi.org/10.1074/jbc.M413638200
  18. Delatte. T., Umhang, M., Trevisan, M., Eicke, S., Thorneycroft, D., Smith, S. M. and Zeeman, S. C. (2006) Evidence for distinct mechanisms of starch granule breakdown in plants. J. Biol. Chem. 281, 12050-12059 https://doi.org/10.1074/jbc.M513661200
  19. H. G. (1998) Differential expression of senescence- associated mRNAs during leaf senescence induced by different senescence-inducing factors in Arabidopsis. Plant Mol. Biol. 37, 445-454 https://doi.org/10.1023/A:1005958300951
  20. Quirino, B. F., Normanly, J. and Amasino, R. M. (1999) Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Mol. Biol. 40, 267-278 https://doi.org/10.1023/A:1006199932265
  21. Buchanan-Wollaston, V., Earl, S., Harrison, E., Mathas, E., Navabpour, S., Page, T. and Pink, D. (2003) The molecular analyses of leaf senescence-a genomics approach. Plant Biotechnol. J. 1, 3-22 https://doi.org/10.1046/j.1467-7652.2003.00004.x
  22. Lim. P. O., Woo, H. R. and Nam, H. G. (2003) Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci. 8: 272-278 https://doi.org/10.1016/S1360-1385(03)00103-1
  23. Weaver, L. M., Gan, S., Quirino, B. and Amasino, R. M. (1998) A comparison of the expression patterns of several senescence associated genes in response to stress and hormone treatment. Plant Mol. Biol. 37, 455-469 https://doi.org/10.1023/A:1005934428906
  24. Mockler, T., Yang, H., Yu, X., Parikh, D., Cheng, Y. C., Dolan, S. and Lin, C. (2003) Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc. Natl. Acad. Sci. USA 100, 2140-2145 https://doi.org/10.1073/pnas.0437826100
  25. Pulla, R. K., Kim, Y. J., Kim, M. K., Senthil, K. S., In, J. G. and Yang, D. C. (2008) Isolation of a novel dehydrin gene from Codonopsis lanceolata and analyses of its response to abiotic stresses. BMB Rep. 41, 338-343 https://doi.org/10.5483/BMBRep.2008.41.4.338
  26. Gao, S., Lin, J., Liu, X., Deng, Z., Li, Y., Sun, X. and Tang, K. (2006) Molecular Cloning, Characterization and Functional Analyses of a 2C-methyl-D-erythritol 2, 4-cyclodiphosphate Synthase Gene from Ginkgo biloba. J. Biochem. Mol. Biol. 39, 502-510 https://doi.org/10.5483/BMBRep.2006.39.5.502

Cited by

  1. Transcription factor RD26 is a key regulator of metabolic reprogramming during dark-induced senescence vol.218, pp.4, 2018, https://doi.org/10.1111/nph.15127