DOI QR코드

DOI QR Code

Role of the surface loop on the structure and biological activity of angiogenin

  • Jang, Seung-Hwan (Department of Bioinformatics and Life Science, and CAMDRC, Soongsil University) ;
  • Song, Hyang-Do (Department of Bioinformatics and Life Science, and CAMDRC, Soongsil University) ;
  • Kang, Dong-Ku (Department of Biochemistry, Chungbuk National University) ;
  • Chang, Soo-Ik (Department of Biochemistry, Chungbuk National University) ;
  • Kim, Min-Kyung (Department of Bioinformatics and Life Science, and CAMDRC, Soongsil University) ;
  • Cho, Kwang-Hwi (Department of Bioinformatics and Life Science, and CAMDRC, Soongsil University) ;
  • Scherga, Harold A. (Baker Laboratory of Chemistry and Chemical Biology, Cornell University) ;
  • Shin, Hang-Cheol (Department of Bioinformatics and Life Science, and CAMDRC, Soongsil University)
  • Published : 2009.12.31

Abstract

Angiogenin is a member of the ribonuclease superfamily that induces the formation of new blood vessels. It has been suggested that the surface loop of angiogenin defined by residues 59-71 plays a special role in angiogenic function (1); however, the mechanism of action is not clearly defined. To elucidate the role of the surface loop on the structure, function and stability of angiogenin, three surface loop mutants were produced in which 14 amino acids in the surface loop of RNase A were substituted for the 13 amino acids in the corresponding loop of angiogenin. The structure, stability and biological functions of the mutants were then investigated using biophysical and biological approaches. Even though the substitutions did not influence the overall structure of angiogenin, they affected the stability and angiogenic function of angiogenin, indicating that the surface loop of angiogenin plays a significant role in maintaining the stability and angiogenic function of angiogenin.

Keywords

References

  1. Riordan, J. F. (1997) Structure and function of angiogenin;in Ribonuclases Structures and Functions, D'Alessio, G.;Riordan, J. F. (eds), pp. 445-489, Academic Press, New York
  2. Kurachi, K., Davie, E. W., Strydom, D. J., Riordan, J. F. and Vallee, B. L. (1985) Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor. Biochemistry 24, 5494-5499 https://doi.org/10.1021/bi00341a032
  3. Fett, J. W., Strydom, D. J., Lobb, R. R., Alderman, E. M., Bethune, L. L., Riordan, J. F. and Vallee, B. L. (1985) Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24, 5480-5486 https://doi.org/10.1021/bi00341a030
  4. Shapiro, R., Strydom, D. J., Olson, K. A. and Vallee, B. L. (1987) Isolation of angiogenin from normal human plasma. Biochemistry 26, 5141-5146 https://doi.org/10.1021/bi00390a037
  5. Bond, M. D., Strydom, D. J. and Vallee, B. L. (1993) Characterization and sequencing of rabbit, pig and mouse angiogenins: discernment of functionally important residues and regions. Biochim. Biophys. Acta. 1162, 177-186 https://doi.org/10.1016/0167-4838(93)90145-H
  6. Strydom, D. J., Bond, M. D. and Vallee, B. L. (1997) An angiogenic protein from bovine serum and milk--purification and primary structure of angiogenin-2. Eur. J. Biochem. 247, 535-544 https://doi.org/10.1111/j.1432-1033.1997.00535.x
  7. Shapiro, R., Riordan, J. F. and Vallee, B. L. (1986) Characteristic ribonucleolytic activity of human angiogenin. Biochemistry 25, 3527-3532 https://doi.org/10.1021/bi00360a008
  8. Shapiro, R., Weremowicz, S., Riordan, J. F. and Vallee, B. L. (1987b) Ribonucleolytic activity of angiogenin: essential histidine, lysine, and arginine residues. Proc. Natl. Acad. Sci. U.S.A. 84, 8783-8787 https://doi.org/10.1073/pnas.84.24.8783
  9. St Clair, D. K., Rybak, S. M., Riordan, J. F. and Vallee, B. L. (1987) Angiogenin abolishes cell-free protein synthesis by specific ribonucleolytic inactivation of ribosomes. Proc. Natl. Acad. Sci. U.S.A. 84, 8330-8334 https://doi.org/10.1073/pnas.84.23.8330
  10. Ahmed, A. K., Schaffer, S. W. and Wetlaufer, D. B. (1975) Nonenzymic reactivation of reduced bovine pancreatic ribonuclease by air oxidation and by glutathione oxidoreduction buffers. J. Biol. Chem. 250, 8477-8482
  11. Creighton, T. E. (1979) Intermediates in the refolding of reduced ribonuclease A. J. Mol. Biol. 129, 411-431 https://doi.org/10.1016/0022-2836(79)90504-7
  12. Konishi, Y., Ooi, T. and Scheraga, H. A. (1982) Regeneration of ribonuclease A from the reduced protein. Rate-limiting steps. Biochemistry 21, 4734-4740 https://doi.org/10.1021/bi00262a033
  13. Wearne, S. J. and Creighton, T. E. (1988) Further experimental studies of the disulfide folding transition of ribonuclease A. Proteins: Struct. Funct. Genet. 4, 251-261 https://doi.org/10.1002/prot.340040404
  14. Rothwarf, D. M., Li, Y.-J. and Scheraga, H. A. (1998) Regeneration of bovine pancreatic ribonuclease A: detailed kinetic analysis of two independent folding pathways. Biochemistry 37, 3767-3776 https://doi.org/10.1021/bi972823f
  15. Shin, H.-C. and Scheraga, H. A. (2000) Catalysis of the oxidative folding of bovine pancreatic ribonuclease A by protein disulfide isomerase. J. Mol. Biol. 300, 995-1003 https://doi.org/10.1006/jmbi.2000.3928
  16. Shin, H.-C., Narayan, M., Song, M.-C. and Scheraga, H. A. (2003) Role of the [65-72] disulfide bond in oxidative folding of bovine pancreatic ribonuclease A. Biochemistry 42, 11514-11519 https://doi.org/10.1021/bi030152h
  17. Beitema, J. J., Schüller, C., Irie, M. and Carsana, A. (1988) Molecular evolution of the ribonuclease superfamily. Prog. Biophys. Mol. Biol. 51, 165-192 https://doi.org/10.1016/0079-6107(88)90001-6
  18. Bond, M. D. and Strydom, D. J. (1989) Amino acid sequence of bovine angiogenin. Biochemistry 28, 6110-6113 https://doi.org/10.1021/bi00440a057
  19. Jang, S.-H., Kang, D.-K., Chang, S.-I., Scheraga, H. A. and Shin, H.-C. (2004) High level production of bovine angiogenin in E. coli by an efficient refolding procedure. Biotechnol. Lett. 26, 1501-1504 https://doi.org/10.1023/B:BILE.0000044452.57375.fb
  20. Shapiro, R. and Vallee, B. L. (1989) Site-directed mutagenesis of histidine-13 and histidine-114 of human angiogenin. Alanine derivatives inhibit angiogenin-induced angiogenesis. Biochemistry 28, 7401-7408 https://doi.org/10.1021/bi00444a038
  21. Nguyen, M., Shing, Y. and Folkman, J. (1994) Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc. Res. 47, 31-40 https://doi.org/10.1006/mvre.1994.1003
  22. Dimmeler, S., Dernbach, E. and Zeiher, A. M. (2000) Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett. 477, 258-262 https://doi.org/10.1016/S0014-5793(00)01657-4
  23. Tamura, M., Gu, J., Matsumoto, K., Aota, S., Parsons, R. and Yamada, K. M. (1998) Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 280, 1614-1617 https://doi.org/10.1126/science.280.5369.1614
  24. Huang, J. and Kontos, C. D. (2002) PTEN modulates vascular endothelial growth factor-mediated signaling and angiogenic effects. J. Biol. Chem. 277, 10760-10766 https://doi.org/10.1074/jbc.M110219200
  25. Hallahan, T. W., Shapiro, R. and Vallee, B. L. (1992) Importance of asparaginine-61 and asparagine-109 to the angiogenic activity of human angiogenin. Biochemistry 31, 8022-8029 https://doi.org/10.1021/bi00149a036
  26. Raines, R. T., Toscano, M. P., Nierenarten, D. M., Ha, J. H. and Auerbach, R. (1995) Replacing a surface loop endows ribonuclease A with angiogenic activity. J. Biol. Chem. 270, 17180-17184 https://doi.org/10.1074/jbc.270.29.17180
  27. Leland P. A., Staniszewski, K. E., Park, C., Kelemen, B. R. and Raines, R. T. (2002) The ribonucleolytic activity of angiogenin. Biochemistry 41, 1343-1350 https://doi.org/10.1021/bi0117899