DOI QR코드

DOI QR Code

Association of polymorphisms in thromboxane A2 receptor and thromboxane A synthase 1 with cerebral infarction in a Korean population

  • Park, Sun-Ah (Department of Neurology, Soonchunhyang University Bucheon Hospital) ;
  • Park, Byung-Lae (Department of Genetic Epidemiology, SNP Genetics, Inc.) ;
  • Park, Jeong-Ho (Department of Neurology, Soonchunhyang University Bucheon Hospital) ;
  • Lee, Tae-Kyeong (Department of Neurology, Soonchunhyang University Bucheon Hospital) ;
  • Sung, Ki-Bum (Department of Neurology, Soonchunhyang University Bucheon Hospital) ;
  • Lee, You-Kyoung (Department of Laboratory Medicine, Soonchunhyang University Bucheon Hospital) ;
  • Chang, Hun-Soo (Genome Research Center for Allergy and Respiratory Diseases, Division of Allergy and Respiratory Medicine) ;
  • Park, Choon-Sik (Genome Research Center for Allergy and Respiratory Diseases, Division of Allergy and Respiratory Medicine) ;
  • Shin, Hyoung-Doo (Department of Genetic Epidemiology, SNP Genetics, Inc.)
  • Published : 2009.04.30

Abstract

Thromboxane A2 (TBXA2) is a potent vasoconstrictor in cerebral circulation and is a known contributor to the pathogenesis of cerebral infarction. Thromboxane A2 synthase 1 (TBXAS1) and thromboxane A2 receptors (TBXA2R) are key components in TBXA2 function. We examined whether genetic variants in TBXA2R and TBXAS1 are risk factors for cerebral infarction by genotyping 453 Korean patients with noncardiogenic cerebral infarction and 260 controls. A few, specific polymorphisms in the TBXA2R (-3372G>C, +4710T>C and 4839T>C) and TBXAS1 (+16184G>T, +141931A>T and +177729G>A) genes were chosen and investigated. Logistic regression showed the frequencies of TBXAS1+16184G>T and TBXAS1-ht3 were significantly more frequent in cerebral infarction (P = 0.002, OR = 2.75 and P = 0.01, OR = 1.57, respectively), specifically in small-artery occlusion (SAO) type of cerebral infarction (P = 0.0003 and 0.005, respectively). These results suggest specific TBXAS1 gene polymorphisms may be a useful marker for development of cerebral infarction, especially SAO type in Korean population.

Keywords

References

  1. Feigin, V. L., Lawes, C. M., Bennett, D. A. and Anderson, C. S. (2003) Stroke epidemiology: a review of populationbased studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2, 43-53 https://doi.org/10.1016/S1474-4422(03)00266-7
  2. Liao, D., Myers, R., Hunt, S., Shahar, E., Paton, C., Burke, G., Province, M. and Heiss, G. (1997) Familial history of stroke and stroke risk. The family heart study. Stroke 28, 1908-1912 https://doi.org/10.1161/01.STR.28.10.1908
  3. Pezzini, A., Grassi, M., Del Zotto, E., Archetti, S., Spezi, R., Vergani, V., Assanelli, D., Caimi, L. and Padovani, A. (2005) Cumulative effect of predisposing genotypes and their interaction with modifiable factors on the risk of ischemic stroke in young adults. Stroke 36, 533-539 https://doi.org/10.1161/01.STR.0000155741.31499.c2
  4. Hassan, A. and Markus, H. S. (1988) Genetics and ischemic stroke. Brain 123, 1784-1812 https://doi.org/10.1093/brain/123.9.1784
  5. Mehta, J. L., Lawson, D., Mehta, P. and Saldeen, T. (1988) Increased prostacyclin and thromboxane A2 biosynthesis in atherosclerosis. Proc. Natl. Acad. Sci. U.S.A. 85, 4511-4515 https://doi.org/10.1073/pnas.85.12.4511
  6. Koudstaal, P. J., Ciabattoni, G., van Gijn, J., Nieuwenhuis, H. K., de Groot, P. G., Sixma, J. J. and Patrono, C. (1993) Increased thromboxane biosynthesis in patients with acute cerebral ischemia. Stroke 24, 219-223 https://doi.org/10.1161/01.STR.24.2.219
  7. Preston, F. E., Whipps, S., Jackson, C. A., French, A. J., Wyld, P. J. and Stoddard, C. J. (1981) Inhibition of prostacyclin and platelet thromboxane A2 after low-dose aspirin. N. Engl. J. Med. 304, 76-79 https://doi.org/10.1056/NEJM198101083040203
  8. Weksler, B. B., Kent, J. L., Rudolph, D., Scherer, P. B. and Levy, D. E. (1985) Effects of low dose aspirin on platelet function in patients with recent cerebral ischemia. Stroke 16, 5-9 https://doi.org/10.1161/01.STR.16.1.5
  9. Antiplatelet Trialists' Collaboration (1988) Secondary prevention of vascular disease by prolonged anti-platelet therapy. Br. Med. J. 296, 320-331 https://doi.org/10.1136/bmj.296.6618.320
  10. Chen, S. T., Hsu, C. Y., Hogan, E. L., Halushka, P. V., Linet, O. I. and Yatsu, F. M. (1986) Thromboxane, prostacyclin, and leukotrienes in cerebral ischemia. Neurology 36, 466-470 https://doi.org/10.1212/WNL.36.4.466
  11. Hirata, T., Kakizuka, A., Ushikubi, F., Fuse, I., Okuma, M. and Narumiya, S. (1994) Arg60 to Leu mutation of the human thromboxane A2 receptor in a dominantly inherited bleeding disorder. J. Clin. Invest. 94, 1662-1667 https://doi.org/10.1172/JCI117510
  12. Cheng, Y., Austin, S. C., Rocca, B., Koller, B. H., Coffman, T. M., Grosser, T., Lawson, J. A. and FitzGerald, G. A. (2002) Role of prostacyclin in the cardiovascular response to thromboxane A2. Science 296, 539-541 https://doi.org/10.1126/science.1068711
  13. Tsujita, Y., Kinoshita, M., Tanabe, T. and Iwai, N. (2000) Role of a genetic variation in the promoter of human thromboxane synthase gene in myocardial infarction. Atherosclerosis 153, 261-262 https://doi.org/10.1016/S0021-9150(00)00593-1
  14. Unoki, M., Furuta, S., Onouchi, Y., Watanabe, O., Doi, S., Fujiwara, H., Miyatake, A., Fujita, K., Tamari, M. and Nakamura, Y. (2000) Association studies of 33 single nucleotide polymorphisms (SNPs) in 29 candidate genes for bronchial asthma: positive association a T924C polymorphism in the thromboxane A2 receptor gene. Hum. Genet. 106, 440-446 https://doi.org/10.1007/s004390000267
  15. Shin, H. D., Park, B. L., Jung, J. H., Wang, H. J., Park, H. S., Choi, B. W., Hong, S. J., Lee, Y. M., Kim, Y. H. and Park, C. S. (2003) Association of thromboxane A2 receptor (TBXA2R) with atopy and asthma. J. Allergy. Clin. Immunol. 112, 454-457 https://doi.org/10.1067/mai.2003.1641
  16. Kaneko, Y., Nakayama, T., Saito, K., Morita, A., Sato, I., Maruyama, A., Soma, M., Takahashi, T. and Sato, N. (2006) Relationship between the thromboxane A2 receptor gene and susceptibility to cerebral infarction. Hypertens. Res. 29, 665- 671 https://doi.org/10.1291/hypres.29.665
  17. Moncada, S. and Vance, J. R. (1978) Pharmacology andendogenous roles of prostaglandin endoperoxides, thromboxane A2 and prostacyclin. Pharmacol. Rev. 30, 293-331
  18. Dogne, J. M., Hanson, J., de Leval, X., Pratico, D., Pace- Asciak, C.R., Drion, P., Pirotte, B. and Ruan, K. H. (2006) From the design to the clinical application of thromboxane modulator. Curr. Pharm. Design 12, 903-923 https://doi.org/10.2174/138161206776055921
  19. Imamura, T., Kiguchi, S., Kobayashi, K., Ichkawa, K., Yamazaki, Y. and Kojima, M. (2003) Effect of ozagrel, a selective thromboxane A2-synthase inhibitor, on cerebral infarction in rats. Comparative study with norphenazone, a free radical scavenger. Arzneimittelforschung. 53, 688-694
  20. Adams, H. P. Jr., Bendixen, B. H., Kappelle, L. J., Biller, J., Love, B. B., Gordon, D. L. and Marsh, E. E. 3rd. (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment. Stroke 24, 35-41 https://doi.org/10.1161/01.STR.24.1.35
  21. Bamford, J., Sandercock, P., Dennis, M., Burn, J. and Warlow, C. (1991) Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet. 337, 1521-1526 https://doi.org/10.1016/0140-6736(91)93206-O
  22. North American Symptomatic Carotid Endarterectomy Trial Collaborators (1991) Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N. Eng. J. Med. 325, 445-453 https://doi.org/10.1056/NEJM199108153250701
  23. Fisher, C. M. (1968) The arterial lesions underlying lacunes. Acta. Neuropathol (Berl). 12, 1-15
  24. Mohr, J. P. and Marti-Vilalta, J. L. (1998) Lacunes; in Stroke pathophysiology, diagnosis, and management, Barnett H. J. M., Mohr J. P., Stein B. M. and Yatu F. M. (eds), pp. 599-622, Churchill Livingstone, New York, USA
  25. Hendra, T. and Betteridge, D. J. (1989) Platelet function, platelet prostanoids and vascular prostacyclin in diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 35, 197-212 https://doi.org/10.1016/0952-3278(89)90003-3
  26. Moreno, A., De La Cruz, J. P., Garcia Campos, J. M. and Sanchez de la Custa, F. (1995) Prostacyclin-thromboxane balance and retinal vascular pattern in rats with experimentally induced diabetes. Can. J. Ophthalmol. 30, 117-123
  27. Oishi, M., Mochizuki, Y., Hara, M., Yoshihashi, H. and Takasu, T. (1996) Effects of sodium ozagrel on hemostatic markers and cerebral blood flow in lacunar infarction. Clin. Neuropharmacol. 19, 526-531 https://doi.org/10.1097/00002826-199619060-00007
  28. Lastilla, M. (2006) Lacunar infarct. Clin. Exp. Hypertens. 28, 205-215 https://doi.org/10.1080/10641960600549082
  29. Hulley, S. B. (1988) The US National Cholsterol Education Program. Adult treatment guidelines. Drugs 36 (Suppl. 3), 100-104 https://doi.org/10.2165/00003495-198800363-00021
  30. Kim, S. H., Choi, J. H., Park, H. S., Holloway, J. W., Lee, S. K., Park, C. S. and Shin, H. D. (2005) Association of thromboxane A2 receptor gene polymorphism with the phenotype of acetylsalicylic acid-intolerant asthma. Clin. Exp. Allergy 35, 585-590 https://doi.org/10.1111/j.1365-2222.2005.02220.x
  31. Livak, K. J. (1999) Allelic discrimination using fluorogenic probes and the 5' nuclease assay. Genet. Anal. 14, 143-149 https://doi.org/10.1016/S1050-3862(98)00019-9
  32. Barrett, J. C., Fry, B., Maller, J. and Daly, M. J. (2005) Haploview: analysis and visualization of LD and halotype maps. Bioinformatics 21, 263-265 https://doi.org/10.1093/bioinformatics/bth457
  33. Stephens, M., Smith, N. J. and Donnelly, P. (2001) A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978-989 https://doi.org/10.1086/319501
  34. Nyholt, D. R. (2004) A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am. J. Hum. Genet. 74, 765-769 https://doi.org/10.1086/383251

Cited by

  1. Functional analysis of human thromboxane synthase polymorphic variants vol.22, pp.9, 2012, https://doi.org/10.1097/FPC.0b013e3283562d82
  2. Next-generation re-sequencing of genes involved in increased platelet reactivity in diabetic patients on acetylsalicylic acid vol.27, pp.4, 2016, https://doi.org/10.3109/09537104.2015.1109071
  3. Common genetic variants in platelet surface receptors and its association with ischemic stroke vol.17, pp.8, 2016, https://doi.org/10.2217/pgs.16.21
  4. Assessment of two missense polymorphisms (rs4762 and rs699) of the angiotensinogen gene and stroke vol.5, pp.1, 2013, https://doi.org/10.3892/etm.2012.790
  5. Genetic variants of PTGS2, TXA2R and TXAS1 are associated with carotid plaque vulnerability, platelet activation and TXA2 levels in ischemic stroke patients vol.12, pp.7, 2017, https://doi.org/10.1371/journal.pone.0180704
  6. Interleukin-6 Receptor Polymorphisms Contribute to the Neurological Status of Korean Patients with Ischemic Stroke vol.31, pp.3, 2016, https://doi.org/10.3346/jkms.2016.31.3.430
  7. A Promoter polymorphism (rs17222919, –1316T/G) of ALOX5AP is associated with intracerebral hemorrhage in Korean population vol.85, pp.3-4, 2011, https://doi.org/10.1016/j.plefa.2011.07.004
  8. Xueshuan Xinmaining Tablet Treats Blood Stasis through Regulating the Expression of F13a1, Car1, and Tbxa2r vol.2015, 2015, https://doi.org/10.1155/2015/704390
  9. Effect of cytochrome P450 polymorphism on arachidonic acid metabolism and their impact on cardiovascular diseases vol.125, pp.3, 2010, https://doi.org/10.1016/j.pharmthera.2009.12.002
  10. Positive effect of low-activity thromboxane A synthase 1 gene on prognosis in coronary heart disease vol.87, pp.3, 2015, https://doi.org/10.17116/terarkh201587359-65
  11. Association of thromboxane A2 receptor gene polymorphisms with cerebral infarction in a Chinese population vol.34, pp.10, 2013, https://doi.org/10.1007/s10072-013-1340-x
  12. Up-regulation of thromboxane A2 impairs cerebrovascular eNOS function in aging atherosclerotic mice vol.462, pp.3, 2011, https://doi.org/10.1007/s00424-011-0973-y
  13. Genomic polymorphisms of SLC29A3 associated with overall survival in advanced non-small-cell lung cancer treated with gemcitabine vol.31, pp.4, 2014, https://doi.org/10.1007/s12032-014-0865-z
  14. Association of frequent genetic variants in platelet activation pathway genes with large-vessel ischemic stroke in Polish population vol.28, pp.1, 2017, https://doi.org/10.1080/09537104.2016.1203404
  15. Associations between thromboxane A synthase 1 gene polymorphisms and the risk of ischemic stroke in a Chinese Han population vol.13, pp.3, 2018, https://doi.org/10.4103/1673-5374.228729