DOI QR코드

DOI QR Code

SAFB1, an RBMX-binding protein, is a newly identified regulator of hepatic SREBP-1c gene

  • Omura, Yasushi (Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science) ;
  • Nishio, Yoshihiko (Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science) ;
  • Takemoto, Tadashi (Department of Molecular Genetics in Medicine, Shiga University of Medical Science) ;
  • Ikeuchi, Chikako (Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science) ;
  • Sekine, Osamu (Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science) ;
  • Morino, Katsutaro (Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science) ;
  • Maeno, Yasuhiro (Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science) ;
  • Obata, Toshiyuki (Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science) ;
  • Ugi, Satoshi (Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science) ;
  • Maegawa, Hiroshi (Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science) ;
  • Kimura, Hiroshi (Department of Molecular Genetics in Medicine, Shiga University of Medical Science) ;
  • Kashiwagi, Atsunori (Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science)
  • Published : 2009.04.30

Abstract

Sterol regulatory element-binding protein (SREBP)-1c plays a crucial role in the regulation of lipogenic enzymes in the liver. We previously reported that an X-chromosome-linked RNA binding motif (RBMX) regulates the promoter activity of Srebp-1c. However, still unknown was how it regulates the gene expression. To elucidate this mechanism, we screened the cDNA library from mouse liver by yeast two-hybrid assay using RBMX as bait and identified scaffold attachment factor B1 (SAFB1). Immunoprecipitation assay demonstrated binding of SAFB1 to RBMX. Chromatin immunoprecipitation assay showed binding of both SAFB1 and RBMX to the upstream region of Srebp-1c gene. RNA interference of Safb1 reduced the basal and RBMX-induced Srebp-1c promoter activities, resulting in reduced Srebp-1c gene expression. The effect of SAFB1 overexpression on Srebp-1c promoter was found only in the presence of RBMX. These results indicate a major role for SAFB1 in the activation of Srebp-1c through its interaction with RBMX.

Keywords

References

  1. Horton, J. D., Goldstein, J. L. and Brown, M. S. (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125-1131 https://doi.org/10.1172/JCI0215593
  2. Hua, X., Sakai, J., Brown, M. S. and Goldstein, J. L. (1996) Regulated cleavage of sterol regulatory element binding proteins requires sequences on both sides of the endoplasmic reticulum membrane. J. Biol. Chem. 271, 10379-10384 https://doi.org/10.1074/jbc.271.17.10379
  3. Shimomura, I., Shimano, H., Horton, J. D., Goldstein, J. L. and Brown, M. S. (1997) Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J. Clin. Invest. 99, 838-845 https://doi.org/10.1172/JCI119247
  4. Hasty, A. H., Shimano, H., Yahagi, N., Amemiya-Kudo, M., Perrey, S., Yoshikawa, T., Osuga, J., Okazaki, H., Tamura, Y., Iizuka, Y., Shionoiri, F., Ohashi, K., Harada, K., Gotoda, T., Nagai, R., Ishibashi, S. and Yamada, N. (2000) Sterol regulatory element-binding protein-1 is regulated by glucose at the transcriptional level. J. Biol. Chem. 275, 31069-31077 https://doi.org/10.1074/jbc.M003335200
  5. Foretz, M., Guichard, C., Ferre, P. and Foufelle, F. (1999) Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc. Natl. Acad. Sci. USA 96, 12737-12742 https://doi.org/10.1073/pnas.96.22.12737
  6. Zhou, L., Li, Y., Nie, T., Feng, S., Yuan, J., Chen, H. and Yang, Z. (2007) Clenbuterol inhibits SREBP-1c expression by activating CREB1. J. Biochem. Mol. Biol. 40, 525-531 https://doi.org/10.5483/BMBRep.2007.40.4.525
  7. Nagata, R., Nishio, Y., Sekine, O., Nagai, Y., Maeno, Y., Ugi, S., Maegawa, H. and Kashiwagi, A. (2004) Single nucleotide polymorphism (-468 Gly to A) at the promoter region of SREBP-1c associates with genetic defect of fructose-induced hepatic lipogenesis [corrected]. J. Biol. Chem. 279, 29031-29042 https://doi.org/10.1074/jbc.M309449200
  8. Takemoto, T., Nishio, Y., Sekine, O., Ikeuchi, C., Nagai, Y., Maeno, Y., Maegawa, H., Kimura, H. and Kashiwagi, A. (2007) RBMX is a novel hepatic transcriptional regulator of SREBP-1c gene response to high-fructose diet. FEBS Lett. 581, 218-222 https://doi.org/10.1016/j.febslet.2006.12.014
  9. Shin, K. H., Kim, R. H., Kim, R. H., Kang, M. K. and Park, N. H. (2008) hnRNP G elicits tumor-suppressive activity in part by upregulating the expression of Txnip. Biochem. Biophys. Res. Commun. 372, 880-885 https://doi.org/10.1016/j.bbrc.2008.05.175
  10. Choi, Y. D., Grabowski, P. J., Sharp, P. A. and Dreyfuss, G. (1986) Heterogeneous nuclear ribonucleoproteins: role in RNA splicing. Science 231, 1534-1539 https://doi.org/10.1126/science.3952495
  11. Soulard, M., Della Valle, V., Siomi, M. C., Pinol-Roma, S., Codogno, P., Bauvy, C., Bellini, M., Lacroix, J. C., Monod, G., Dreyfuss, G. and Larsen C.J. (1993) hnRNP G: sequence and characterization of a glycosylated RNA-binding protein. Nucleic Acids. Res. 21, 4210-4217 https://doi.org/10.1093/nar/21.18.4210
  12. Weighardt, F., Biamonti, G. and Riva, S. (1996) The roles of heterogeneous nuclear ribonucleoproteins (hnRNP) in RNA metabolism. Bioessays 18, 747-756 https://doi.org/10.1002/bies.950180910
  13. Elliott, D. J., Oghene, K., Makarov, G., Makarova, O., Hargreave, T. B., Chandley, A. C., Eperon, I. C. and Cooke, H. J. (1998) Dynamic changes in the subnuclear organisation of pre-mRNA splicing proteins and RBM during human germ cell development. J. Cell Sci. 111, 1255-1265
  14. Adamik, B., Islam, A., Rouhani, F. N., Hawari, F. I., Zhang, J. and Levine, S. J. (2008) An association between RBMX, a heterogeneous nuclear ribonucleoprotein, and ARTS-1 regulates extracellular TNFR1 release. Biochem. Biophys. Res. Commun. 371, 505-509 https://doi.org/10.1016/j.bbrc.2008.04.103
  15. Debril, M. B., Dubuquoy, L., Feige, J. N., Wahli, W., Desvergne, B., Auwerx, J. and Gelman, L. (2005) Scaffold attachment factor B1 directly interacts with nuclear receptors in living cells and represses transcriptional activity. J. Mol. Endocrinol. 35, 503-517 https://doi.org/10.1677/jme.1.01856
  16. Weighardt, F., Cobianchi, F., Cartegni, L., Chiodi, I., Villa, A., Riva, S and Biamonti, G. (1999) A novel hnRNP protein (HAP/SAF-B) enters a subset of hnRNP complexes and relocates in nuclear granules in response to heat shock. J. Cell Sci. 112, 1465-1476
  17. Sergeant, K. A., Bourgeois, C. F., Dalgliesh, C., Venables, J. P., Stevenin, J. and Elliott, D. J. (2007) Alternative RNA splicing complexes containing the scaffold attachment factor SAFB2. J. Cell Sci. 120, 309-319 https://doi.org/10.1242/jcs.03344
  18. Ivanova, M., Dobrzycka, K. M., Jiang, S., Michaelis, K., Meyer, R., Kang, K., Adkins, B., Barski, O. A., Zubairy, S., Divisova, J., Lee, A. V. and Oesterreich, S. (2005) Scaffold attachment factor B1 functions in development, growth, and reproduction. Mol. Cell Biol. 25, 2995-3006 https://doi.org/10.1128/MCB.25.8.2995-3006.2005
  19. Oesterreich, S., Lee, A. V., Sullivan, T. M., Samuel, S. K., Davie, J. R. and Fuqua, S. A. (1997) Novel nuclear matrix protein HET binds to and influences activity of the HSP27 promoter in human breast cancer cells. J. Cell Biochem. 67, 275-286 https://doi.org/10.1002/(SICI)1097-4644(19971101)67:2<275::AID-JCB13>3.0.CO;2-E
  20. Townson, S. M., Kang, K., Lee, A. V. and Oesterreich, S. (2004) Structure-function analysis of the estrogen receptor alpha corepressor scaffold attachment factor-B1: identification of a potent transcriptional repression domain. J. Biol. Chem. 279, 26074-26081
  21. Nayler, O., Stratling, W., Bourquin, J. P., Stagljar, I., Lindemann, L., Jasper, H., Hartmann, A. M., Fackelmayer, F. O., Ullrich, A. and Stamm, S. (1998) SAF-B protein couples transcription and pre-mRNA splicing to SAR/MAR elements. Nucleic Acids. Res. 26, 3542-3549 https://doi.org/10.1093/nar/26.15.3542
  22. Miura, S., Kai, Y., Ono, M. and Ezaki, O. (2003) Overexpression of peroxisome proliferator-activated receptor gamma coactivator-1alpha down-regulates GLUT4 mRNA in skeletal muscles. J. Biol. Chem. 278, 31385-31390 https://doi.org/10.1074/jbc.M304312200
  23. Sato, Y., Nishio, Y., Sekine, O., Kodama, K., Nagai, Y., Nakamura, T., Maegawa, H. and Kashiwagi, A. (2007) Increased expression of CCAAT/enhancer binding protein-beta and -delta and monocyte chemoattractant protein-1 genes in aortas from hyperinsulinaemic rats. Diabetologia 50, 481-489 https://doi.org/10.1007/s00125-006-0480-4

Cited by

  1. The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease vol.23, pp.3, 2012, https://doi.org/10.1016/j.jnutbio.2011.09.006
  2. Proteomics-Based Identification of the Molecular Signatures of Liver Tissues from Aged Rats following Eight Weeks of Medium-Intensity Exercise vol.2016, 2016, https://doi.org/10.1155/2016/3269405
  3. SAFB1- and SAFB2-mediated transcriptional repression: relevance to cancer vol.40, pp.4, 2012, https://doi.org/10.1042/BST20120030
  4. SAFB1's multiple functions in biological control-lots still to be done! vol.109, pp.2, 2010, https://doi.org/10.1002/jcb.22420
  5. Peripheral Nervous System Genes Expressed in Central Neurons Induce Growth on Inhibitory Substrates vol.7, pp.6, 2012, https://doi.org/10.1371/journal.pone.0038101
  6. Characterization of the RNA recognition mode of hnRNP G extends its role in SMN2 splicing regulation vol.42, pp.10, 2014, https://doi.org/10.1093/nar/gku244
  7. T cells by preventing binding of RNA polymerase II to HIV-1's long terminal repeat vol.293, pp.31, 2018, https://doi.org/10.1074/jbc.RA118.002018