Relationship between biofilm formation and the antimicrobial resistance in the Staphylococcus spp. isolated from animal and air

  • Seo, Yeon-Soo (College of Veterinary Medicine, Brain Korea 21 Program for Veterinary Science and KRF Priority Zoonotic Disease Research Institute, Seoul National University) ;
  • Lee, Deog Young (College of Veterinary Medicine, Brain Korea 21 Program for Veterinary Science and KRF Priority Zoonotic Disease Research Institute, Seoul National University) ;
  • Kang, Mi Lan (College of Veterinary Medicine, Brain Korea 21 Program for Veterinary Science and KRF Priority Zoonotic Disease Research Institute, Seoul National University) ;
  • Lee, Won Jung (College of Veterinary Medicine, Brain Korea 21 Program for Veterinary Science and KRF Priority Zoonotic Disease Research Institute, Seoul National University) ;
  • Yoo, Han Sang (College of Veterinary Medicine, Brain Korea 21 Program for Veterinary Science and KRF Priority Zoonotic Disease Research Institute, Seoul National University)
  • Accepted : 2009.09.14
  • Published : 2009.09.30

Abstract

Biofilm has been described as a barrier, which produced by microorganisms to survive and protect themselves against various environments, like antibiotic agents. Staphylococcus spp. is a common cause of nosocomial and environmental infection. Thirty-six and thirty-five Staphylococci were isolated from animals and air, respectively. Based on the biofilm forming ability of the bacterium reported in our previous report, relationship between biofilm formation and antibiotic-resistance was investigated in this study. Regarding antibiotics susceptibility, cefazolin was the most effective agent to the bacteria. Strong biofilm-forming Staphylococcus spp. isolates might have a higher antibiotic resistance than weak biofilm isolates regardless of the presence of antibiotic resistance genes (p < 0.05). This result suggested that the chemical complexity of the biofilm might increase the antibiotic resistance due to the decrease of antibiotic diffusion into cells through the extensive matrix.

Keywords

References

  1. Ammendolia MG, Di Rosa R, Montanaro L, Arciola CR, Baldassarri L. Slime production and expression of the slime-associated antigen by staphylococcal clinical isolates. J Clin Microbiol 1999, 37, 3235-3238
  2. Amorena B, Gracia E, Monzon M, Leiva J, Oteiza C, Perez M, Alabart JL, Hernandez-Yago J. Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro. J Antimicrob Chemother 1999, 44, 43-55 https://doi.org/10.1093/jac/44.1.43
  3. Andersson S, Kuttuva Rajarao G, Land CJ, Dalhammar G. Biofilm formation and interactions of bacterial strains found in wastewater treatment systems. FEMS Microbiol Lett 2008, 283, 83-90 https://doi.org/10.1111/j.1574-6968.2008.01149.x
  4. Arslan S, Ozkarde F. Slime production and antibiotic susceptibility in staphylococci isolated from clinical samples. Mem Inst Oswaldo Cruz 2007, 102, 29-33
  5. Baldassarri L, Creti R, Recchia S, Imperi M, Facinelli B, Giovanetti E, Pataracchia M, Alfarone G, Orefici G. Therapeutic failures of antibiotics used to treat macrolide-susceptible Streptococcus pyogenes infections may be due to biofilm formation. J Clin Microbiol 2006, 44, 2721-2727 https://doi.org/10.1128/JCM.00512-06
  6. Cerca N, Martins S, Pier GB, Oliveira R, Azeredo J. The relationship between inhibition of bacterial adhesion to a solid surface by sub-MICs of antibiotics and subsequent development of a biofilm. Res Microbiol 2005, 156, 650-655 https://doi.org/10.1016/j.resmic.2005.02.004
  7. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999, 284, 1318-1322 https://doi.org/10.1126/science.284.5418.1318
  8. Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penades JR. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 2001, 183, 2888-2896 https://doi.org/10.1128/JB.183.9.2888-2896.2001
  9. Cucarella C, Tormo MA, Knecht E, Amorena B, Lasa I, Foster TJ, Penades JR. Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process. Infect Immun 2002, 70, 3180-3186 https://doi.org/10.1128/IAI.70.6.3180-3186.2002
  10. de Allori MC, Jure MA, Romero C, de Castillo ME. Antimicrobial resistance and production of biofilms in clinical isolates of coagulase-negative Staphylococcus strains. Biol Pharm Bull 2006, 29, 1592-1596 https://doi.org/10.1248/bpb.29.1592
  11. Donlan RM, Costerton JW. Biofilms: Survival mechanisms of clinically relevant microorganisms. ClinMicrobiol Rev 2002, 15, 167-193 https://doi.org/10.1128/CMR.15.2.167-193.2002
  12. Donlan RM, Murga R, Bell M, Toscano CM, Carr JH, Novicki TJ, Zuckerman C, Corey LC, Miller JM. Protocol for detection of biofilms on needleless connectors attached to central venous catheters. J Clin Microbiol 2001, 39, 750-753 https://doi.org/10.1128/JCM.39.2.750-753.2001
  13. Drenkard E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 2003, 5, 1213- 1219 https://doi.org/10.1016/j.micinf.2003.08.009
  14. Edmiston CE Jr, Goheen MP, Seabrook GR, Johnson CP, Lewis BD, Brown KR, Towne JB. Impact of selective antimicrobial agents on Staphylococcal adherence to biomedical devices. Am J Surg 2006, 192, 344-354 https://doi.org/10.1016/j.amjsurg.2006.04.009
  15. Falkinham JO 3rd. Growth in catheter biofilms and antibiotic resistance of Mycobacterium avium. J Med Microbiol 2007, 56, 250-254 https://doi.org/10.1099/jmm.0.46935-0
  16. Graninger W, Wenisch C, Hasenhundl M. Treatment of Staphylococcal infections. Curr Opin Infect Dis 1995, 8, S20-28 https://doi.org/10.1097/00001432-199503001-00005
  17. Jager S, Mack D, Rohde H, Hostkotte MA, Knobloch JK. Disintegration of Staphylococcus epidermidis biofilms under glucose-limiting conditions depends on the activity of the alternative sigma factor $\alpha^{B}$. Appl Environ Microbiol 2005, 71, 5577-5581 https://doi.org/10.1128/AEM.71.9.5577-5581.2005
  18. Kogan G, Sadovskaya I, Chaignon P, Chokr A, Jabbouri S. Biofilms of clinical strains of Staphylococcus that do not contain polysaccharide intercellular adhesin. FEMS Microbiol Lett 2006, 255, 11-16 https://doi.org/10.1111/j.1574-6968.2005.00043.x
  19. Lasa I, Del Pozo JL, Penades JR, Leiva J. Bacterial biofilms and infection. An Sist Sanit Navar 2005, 28, 163-175
  20. Livermore DM. Antibiotic resistance in Staphylococci. Int J Antimicrob Agents 2000, 16 (Suppl), S3-10 https://doi.org/10.1016/S0924-8579(00)00299-5
  21. Louie L, Matsumura SO, Choi E, Louie M, Simor AE. Evaluation of three rapid methods for detection of methicillin resistance in Staphylococcus aureus. J Clin Microbiol 2000, 38, 2170-2173
  22. Martineau F, Picard FJ, Ke D, Paradis S, Roy PH, Ouellette M, Bergeron MG. Development of a PCR assay for identification of Staphylococci at genus and species levels. J Clin Microbiol 2001, 39, 2541-2547 https://doi.org/10.1128/JCM.39.7.2541-2547.2001
  23. Petrelli D, Repetto A, D'Ercole S, Rombini S, Ripa S, Prenna M, Vitali LA. Analysis of meticillinsusceptible and meticillin-resistant biofilm-forming Staphylococcus aureus from catheter infections isolated in a large Italian hospital. J Med Microbiol 2008, 57, 364-372 https://doi.org/10.1099/jmm.0.47621-0
  24. Planchon S, Gaillard-Martinie B, Dordet-Frisoni E, Bellon-Fontaine MN, Leroy S, Labadie J, Hebraud M, Talon R. Formation of biofilm by Staphylococcus xylosus. Int J Food Microbiol 2006, 109, 88-96 https://doi.org/10.1016/j.ijfoodmicro.2006.01.016
  25. Sakoulas G, Gold HS, Venkataraman L, Degirolami PC, Eliopoulos GM, Qian Q. Methicillin-resistant Staphylococcus aureus: Comparison of susceptibility testing methods and analysis of mecA-positive susceptible strains. J Clin Microbiol 2001, 39, 3946- 3951 https://doi.org/10.1128/JCM.39.11.3946-3951.2001
  26. Seo YS, Lee DY, Rayamahji N, Kang ML, Yoo HS. Biofilm-forming associated genotypic and phenotypic characteristics of Staphylococcus spp. isolated from animals and air. Res Vet Sci 2008, 85, 433-438 https://doi.org/10.1016/j.rvsc.2008.01.005
  27. Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic- Vlahovic M.. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 2000, 40, 175-179 https://doi.org/10.1016/S0167-7012(00)00122-6
  28. Strommenger B, Kettlitz C, Werner G, Witte W. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J Clin Microbiol 2003, 41, 4089-4094 https://doi.org/10.1128/JCM.41.9.4089-4094.2003
  29. Vadyvaloo V, Otto M. Molecular genetics of Staphylococcus epidermidis biofilms on indwelling medical devices. Int J Artif Organs 2005, 28, 1069-1078 https://doi.org/10.1177/039139880502801104
  30. Vannuffel P, Gigi J, Ezzedine H, Vandercam B, Delmee M, Wauters G, Gala JL. Specific detection of methicillin-resistant Staphylococcus species by multiplex PCR. J Clin Microbiol 1995, 33, 2864-2867
  31. Vasudevan P, Nair MKM, Annamalai T, Venkitanarayanan KS. Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet Microbiol 2003, 92, 179-185 https://doi.org/10.1016/S0378-1135(02)00360-7
  32. Xu M, Zhou YN, Goldstein BP, Jin DJ. Crossresistance of Escherichia coli RNA polymerases conferring rifampin resistance to different antibiotics. J Bacteriol 2005, 187, 2783-2792 https://doi.org/10.1128/JB.187.8.2783-2792.2005