Effective Treatment of Wastewater from the Electroplating Plant of Cold-mill by using Microorganism

냉연공장 도금공정에서 발생되는 폐수의 효율적인 미생물 처리에 관한 연구

  • Kim, Sang-Sik (Department of Environment & Health, Kimpo College) ;
  • Kim, Hyung-Jin (Department of Environment & Health, Kimpo College)
  • Received : 2009.02.26
  • Accepted : 2009.03.23
  • Published : 2009.06.10

Abstract

This research was carried out to establish the effective treatment condition and characteristic of wastewater from the electroplating plant of cold rolling mill by using microorganism. Alkaline wastewater and acidic heavy metal wastewater accounted for 64%, 30%, respectively, of the total wastewater. Highly concentrated thiocyanate was 53890 mg/L as COD and it was 53% of total COD, even though it was 0.03% of wastewater from the electroplating plant. When treating mixed wastewater with microorganism, it was easy to remove when SCN concentrations of mixed wastewater was 200 mg/L or less. While the treatment effect of COD-causing materials was low at the concentration of 400 mg/L or less, it implies that highly concentrated thiocyanate contains a large amount of slowly biodegradable organics. When treating with mixed wastewater, pH was 7.33 at the beginning, but after 8 hours it increased to 7.99. This is caused by ammonia which is generated when SCN of highly concentrated thiocyanate was degraded by microorganism.

본 연구에서는 냉연도금공장의 각 단위공정에서 발생되는 폐수를 미생물을 이용하여 안정하게 처리하기 위하여 각 폐수의 특성파악과 처리조건을 도출하고자 하였다. 발생되는 폐수 중 알칼리성폐수가 전체폐수의 64%를 차지하였으며, 산중금속함유폐수는 30%를 차지했다. 탈류폐액의 COD는 53890 mg/L로 전체 폐수발생량의 0.03%에 불과함에도 불구하고 COD의 53%를 유발하고 있었으며, COD의 94%는 SCN에 의해 기인하였다. 혼합폐수를 미생물로 처리할 때 혼합폐수 중 SCN농도가 200 mg/L 이하일 때 제거가 용이하였다. 반면 COD 유발물질은 400 mg/L 이하가 되더라도 처리효율이 미흡하였다. 이는 탈류폐액 중에는 난분해성 유기물질이 다량 함유되어 있기 때문이라 판단된다. 혼합폐수를 처리할 때 초기에 pH가 7.33이었지만 8 h 후에는 7.99로 상승하였다. 이는 탈류폐액에 함유된 SCN이 박테리아에 의해 분해될 때 발생되는 암모니아에 의해 기인한 것으로 사료된다.

Keywords

Acknowledgement

Supported by : 김포대학

References

  1. K. S. Ko, S. K. Kang, and H. D. Chun, RIST Jounal of R & D, 14, 410 (2000)
  2. S. H. Kim, RIST Journal of R&D, 15, 230 (2001)
  3. M. S. Kumar, A. N. Vaidya, N. Shivaraman, and A. S. Bal, Ind. J. Environ. Health, 45, 29 (2003)
  4. Y. M. Kim, D. H. Park, C. K. Ahn, M. W. Lee, and J. M. Park, Korean Chem. Eng. Res., 46, 1124 (2008)
  5. D. Qingzhi and G. Lixia, J. Appl. Poly. Sci., 84, 1721 (2002) https://doi.org/10.1002/app.10554
  6. M. Osamu, K. Toshiaki, and J. Ikuo, JSWE, 29, 151 (2006) https://doi.org/10.2965/jswe.29.151
  7. T. A. Kurniawan, G. Y. S. Chan, W. H. Lo, and S. Babel, Chem. Eng. J., 118, 83 (2006) https://doi.org/10.1016/j.cej.2006.01.015