DOI QR코드

DOI QR Code

Biochemical characterization of the lipid-binding properties of a broccoli cuticular wax-associated protein, WAX9D, and its application

  • Ahn, Sun-Young (Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook University) ;
  • Kim, Jong-Min (Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook University) ;
  • Pyee, Jae-Ho (Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook University) ;
  • Park, Heon-Yong (Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook University)
  • Published : 2009.06.30

Abstract

In this study, we showed that WAX9D, a nonspecific lipid-transfer protein found in broccoli, binds palmitate (C16) and stearate (C18) with dissociation constants of 0.56 ${\mu}M$ and 0.52 ${\mu}M$, respectively. WAX9D was fused to thioredoxin protein by genetic manipulation to enhance its solubility. The data revealed strong interaction of Trx-WAX9D with palmitate and stearate. The dissociation constants of Trx-WAX9D for palmitate and stearate were 1.1 ${\mu}M$ and 6.4 ${\mu}M$, respectively. The calculated number of binding sites for palmitate and stearate was 2.5 to 2.7, indicating that Trx-WAX9D can bind three molecules of fatty acids. Additionally, Trx-WAX9D was shown to inhibit the apoptotic effect of palmitate in endothelial cells. Our data using Trx-WAX9D provide insight into the broad spectrum of its biological applications with specific palmitate binding.

Keywords

References

  1. Kader, J. C. (1996) Lipid transfer proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 627-654 https://doi.org/10.1146/annurev.arplant.47.1.627
  2. Sterk, P., Booij, H., Schellerkens, G. A., Van Kammen, A. and De vries, S. C. (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3, 907-921 https://doi.org/10.1105/tpc.3.9.907
  3. Olmedo, F. G., Molina, A., Segure, A. and Moreno, M. (1995) The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol. 3, 72-74 https://doi.org/10.1016/S0966-842X(00)88879-4
  4. Lin, K. F., Liu, Y. N., Hsu, S. T., Samuel, D., Cheng, C. S., Bonvin, A. M. and Lyu, P. C. (2005) Characterization and structural analyses of nonspecific lipid transfer protein 1 from mung bean. Biochemistry 44, 5703-5712 https://doi.org/10.1021/bi047608v
  5. Smolennars, M. M., Madsen, O., Rodenburg, K. W. and Van der Horst, D. J. (2005) Molecular diversity and evolution of the large lipid transfer protein superfamily. J. Lipid Res. 48, 489-502 https://doi.org/10.1194/jlr.R600028-JLR200
  6. Shin, D. H., Hwang, J. Y., Kim, K. K. and Suh, S. W. (1995) High-resolution crystal structure of the non-specific lipid transfer protein from maize seedings. Structure 3, 189-199 https://doi.org/10.1016/S0969-2126(01)00149-6
  7. Chavolin, D., Douliez, J. P., Marion, D., Cohen-Addad, C. and Pebay-Peyroula, E. (1999) The crystal structure of a wheat nonspecific lipid transfer protein (ns-LTP1) complexed with two molecules of phospholipid at 2.1$\AA$^{\circ} resolution. Eur. J. Biochem. 264, 562-568 https://doi.org/10.1046/j.1432-1327.1999.00667.x
  8. Douliez, J. P., Michon, T., Elmorjani, K. and Marion, D. (2000) Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J. Cereal Sci. 32, 1-20 https://doi.org/10.1006/jcrs.2000.0315
  9. Lee, J. Y., Min, K., Cha, H., Shin, D. H., Hwang, K. Y. and Suh, S. W. (1998) Rice non-specific lipid transfer protein : the 1. 6$\AA$^{\circ} crystal structure in the unliganded state reveals a small hydrophobic cavity. J. Mol. Biol. 276, 437-448 https://doi.org/10.1006/jmbi.1997.1550
  10. Douliez, J. P., Michon, T. and Marion, D. (2000) Steadystate tyrosine fluorescence to study the lipid-binding properties of a wheat non-specific lipid-transfer protein (ns-LTP). Biochim. Biophys. Acta. 1467, 65-72 https://doi.org/10.1016/S0005-2736(00)00197-8
  11. Pyee, J., Yu, H. and Kolattukudy, P. E. (1994) Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica oleracea) leaves. Arch. Biochem. Biophys. 311, 460-468 https://doi.org/10.1006/abbi.1994.1263
  12. Smialowski, P., Martin-Galiano, A. J., Mikolajka, A., Girschick, T., Holak, T. A. and Frishman, D. (2007) Protein solubility: sequence based prediction and experimental verification. Bioinformatics 23, 2536-2542 https://doi.org/10.1093/bioinformatics/btl623
  13. Cheng, H. C., Cheng, P. T., Peng, P., Lyu, P. C. and Sun, Y. J. (2004) Lipid binding in rice nonspecific lipid transfer protein-1 complexes from Oryza sativa. Protein Sci. 13, 2304-2315 https://doi.org/10.1110/ps.04799704
  14. Guerbette, F., Grosbois, M., Jolliot-Croquin, A., Kader, J. C. and Zachowski, A. (1999) Comparison of lipid binding and transfer properties of two lipid transfer proteins from plants. Biochemistry 38, 14131-14137 https://doi.org/10.1021/bi990952l
  15. Chai, W. and Liu, Z. (2007) p38 mitogen-activated protein kinase mediates palmitate induced apoptosis but not inhibitor of nuclear factor-$\kappa$B degradation in human coronary artery endothelial cells. Endocrinology 148, 1622-1628 https://doi.org/10.1210/en.2006-1068
  16. Cho, K. H., Kim, S. T. and Kim, Y. K. (2007) Purification of a pore-forming peptide toxin, tolaasin, produced by Pseudomonas tolaasii 6264. J. Biochem. Mol. Biol. 40, 113-118 https://doi.org/10.5483/BMBRep.2007.40.1.113
  17. Cheng, C. S., Chen, M. N., Lai, Y. T., Chen, T., Lin, K. F., Liu, Y. J. and Lyu, P. C. (2008) Mutagenesis study of rice nonspecific lipid transfer protein 2 reveals residues that contribute to structure and ligand binding. Proteins 70, 695-706 https://doi.org/10.1002/prot.21520
  18. Kahn, B. B. and Flier, J. S. (2000) Obesity and insulin resistance. J. Clin. Invest. 106, 473-481 https://doi.org/10.1172/JCI10842
  19. Ginsberg, H. N. (2000) Insulin resistance and cardiovascular disease. J. Clin. Invest. 106, 453-458 https://doi.org/10.1172/JCI10762
  20. Meshkini, A. and Yazdanparast, R. (2007) Induction of megakaryotic differentiation in chronic myelogenous leukemia cell K562 by 3-hydrogenkwadaphnin. J. Biochem. Mol. Biol. 40, 944-951 https://doi.org/10.5483/BMBRep.2007.40.6.944
  21. Pyee, J. and Kolattukudy, P. E. (1995) The gene for the major cuticular wax-associated protein and three homologous genes from broccoli (Brassica oleracea) and their expression patterns. Plant J. 7, 49-59 https://doi.org/10.1046/j.1365-313X.1995.07010049.x
  22. Kim, J., Shin, J. and Park, H. (2003) Structural characterization for N-terminal domain of caveolin-1. Korean J. Biol. Sci. 7, 207-211 https://doi.org/10.1080/12265071.2003.9647706
  23. Park, H., Park, S. G., Kim, J., Ko, Y. -G. and Kim, S. (2002) Signaling pathways for TNF production induced by human aminoacyl-tRNA synthetase-associated factor, p43. Cytokine 20, 148-153 https://doi.org/10.1006/cyto.2002.1992
  24. Shin, J., Cho, M., Hyun, J. W., Pyee, J. and Park, H. (2006) A new method for immobilization of lipid-binding proteins to the glass slides. Curr. Appl. Phys. 6, 271-274 https://doi.org/10.1016/j.cap.2005.07.055
  25. Hames, B. D. and Rickwood, D. (1981) Gel electrophoresis of proteins, IRL Press, Washington D. C., USA
  26. Chevallet, M., Luche, S. and Rabilloud, T. (2006) Silver staining of proteins in polyacrylamide gels. Nat. Protoc. 1, 1852-1858 https://doi.org/10.1038/nprot.2006.288
  27. Strader, M. B., Smiley, R. D., Stinnett, L. G., Verberkmoes, N. C. and Howell, E. E. (2001) Role of S65, Q67, I68, and Y69 residues in homoteterameric R67 dihydrofolate reductase. Biochemistry 40, 11344-11352 https://doi.org/10.1021/bi0110544
  28. In, K. M., Park, J. B. and Park, H. (2006) Resveratol at high doses acts as an apoptotic inducer in endothelial cells. Cancer Res. Treat. 38, 48-53 https://doi.org/10.4143/crt.2006.38.1.48
  29. Park, H., Go, Y. M., John, P. L., Maland, M. C., Lisanti, M. P., Abrahamson, D. R. and Jo, H. (1998) Plasma membrane cholesterol is a key molecule in shear stress-dependent activation of extracellular signal-regulated kinase. J. Biol. Chem. 273, 32304-32311 https://doi.org/10.1074/jbc.273.48.32304

Cited by

  1. Lipid-transfer proteins vol.98, pp.4, 2012, https://doi.org/10.1002/bip.22098
  2. Study of nsLTPs in Lotus japonicus genome reveal a specific epidermal cell member (LjLTP10) regulated by drought stress in aerial organs with a putative role in cutin formation vol.82, pp.4-5, 2013, https://doi.org/10.1007/s11103-013-0080-x