A Study on Effects of Vulcanization Systems on Cross-linking and Degradation Reactions of NR/CR Blends Using Dynamic DSC and TGA

Dynamic DSC와 TGA를 이용한 NR/CR 고무블렌드의 가황시스템이 가교 및 열화반응에 미치는 영향 연구

  • Min, Byung-kwon (Polymeric Materials Research Team, Hyundai-Kia Motors R&D Center) ;
  • Park, DongRyul (Division of Rubber Technology and Engineering, KCW Co) ;
  • Ahn, WonSool (Department of Chemical Engineering, Keimyung University)
  • 민병권 (현대자동차 고분자재료연구팀) ;
  • 박동률 (KCW(주) 고무기술연구소) ;
  • 안원술 (계명대학교 화학공학과)
  • Received : 2009.02.09
  • Accepted : 2009.03.05
  • Published : 2009.04.30

Abstract

Effects of variations sulfur/accelerator ratio on cross-linking and thermal degradation behavior of NR/CR rubber compounds were studied using both dynamic DSC and non-isothermal TGA. DSC thermograms of the given samples were obtained with several different heating rates, and after cross-liked in DSC, TGA thermograms with the same samples also obtained. Kissinger analysis was applied to assess the activation energies for the cross-linking and thermal decomposition processes. Results showed that the formation and thermal decomposition reaction of the samples occurred in the overall temperature range of $120{\sim}180^{\circ}C$ and $350{\sim}450^{\circ}C$, respectively, exhibiting that data could be well-fittable by Kissinger method. Furthermore, formation activation energy by DSC was estimated as $83.0{\pm}5.0kJ/mol$, which was much smaller than that of degradation by TGA, $147.0{\pm}2.0kJ/mol$. From these results, it was considered that, although variations of sulfur/accelerator ratio in the present experiments affected little on the formation mechanism and/or thermal degradation, they could play roles as the catalysts which lower the activation energy of formation. Because of stabilization after formation reaction, however, they have no more effects on the lowering the activation energy, showing higher values when decomposition, caused by main-chain scissions.

Dynamic DSC와 TGA를 이용하여 NR/CR 고무복합체의 가황시스템에 따른 가교화반응과 열화반응특성을 연구하였다. 주어진 샘플에 대하여 승온속도를 각각 달리하여 DSC 곡선을 얻었고, 가황반응이 끝난 같은 샘플을 이용하여 TGA에서도 같은 승온 속도의 실험으로 열분해 곡선을 얻은 다음, Kissinger의 해석 방법에 따라 가교 및 열화 반응의 활성화에너지를 구하고 서로 비교하였다. 실험에 사용된 NR/CR 고무복합재료는 대개 $120{\sim}180^{\circ}C$$350{\sim}450^{\circ}C$ 사이의 온도영역에서 각각 가교 반응과 열분해반응이 일어나는 것으로 관찰되었으며 Kissinger의 해석방법이 잘 적용될 수 있는 것으로 나타났다. 또한 DSC에 의한 생성 활성화에너지는 $83.0{\pm}5.0kJ/mol$로서 TGA에 의한 분해 활성화에너지인 $147.0{\pm}2.0kJ/mol$보다 매우 낮은 값을 나타내었다. 이러한 사실로부터 가황제/가황촉진제의 조성비 변화는 반응기구의 변화에는 크게 영향을 미치지 않지만 생성반응 시에는 샘플내의 저분자 화합물들과 함께 촉매역할을 하여 활성화에너지를 낮추는 역할을 하게 되는 반면, 반응이 끝난 후에는 더 이상 촉매로서 작용하지 못하게 되며 이에 따라 열분해활성화에너지는 주쇄의 분해반응에 의해 상대적으로 더 높게 나타내게 되는 것으로 생각할 수 있었다.

Keywords

Acknowledgement

Supported by : 계명대학교

References

  1. Ding, R. and Leonov, A. I., "A Kinetic Model for Sulfur Accelerated Vulcanization of a Natural Rubber Compound," J. Appl. Polym. Sci., 61, 455(1996) https://doi.org/10.1002/(SICI)1097-4628(19960718)61:3<455::AID-APP8>3.0.CO;2-H
  2. Ngolemasango, E. F., Bernnett, M. and Clarke, J., "Kinetics of the Effect of Ageing on Tensile Pproperties of a Natural Rubber Compound," J. Appl. Polym. Sci., 102, 3732(2006) https://doi.org/10.1002/app.24634
  3. Bevilacqua, E. M., "Scission Efficiency in Natural Rubber Oxidation," J. Polym. Sci., Part B: Polymer Letters, 4(1), 27(1966) https://doi.org/10.1002/pol.1966.110040105
  4. Clough, R. L. and Gillen, K. T., "Oxygen Diffusion Effects in Thermally Aged Elastomers," Polym. Degrad. Stab., 38, 47(1992) https://doi.org/10.1016/0141-3910(92)90022-W
  5. Kissinger, H. E., "Reaction Kinetics in Differential Thermal Analysis," Analytical Chemistry, 29, 1702(1957) https://doi.org/10.1021/ac60131a045
  6. Ahn, W., 'Thermal Characterization of an EPDM/IIR Rubber Blend using TG/DTG Analysis,' Elastomer, 42, 55(2007)
  7. Ozawa, T., 'A New Method of Analyzing Thermogravimetric Data,' Bull. Chem. Soc. Japan, 38(11), 1881(1965) https://doi.org/10.1246/bcsj.38.1881
  8. Flynn, J. H. and Wall, L. A., "A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data," J. Polym. Sci., Part B: Polym. Lett., 4, 323(1966) https://doi.org/10.1002/pol.1966.110040504
  9. Sircar, A. K., Thermal Characterization of Polymer Materials ($2^{nd}$ Ed.), edited by Turi, E. A., Vol. 1, Ch. 5, Academic Press, N.Y., 887(1997)
  10. Vyazovkin, S., "Handbook of Thermal Analysis and Calorimetry," edited by Brown, M. E. and Gallagher, P. K., Vol. 5, Ch.13, Elsevier, N.Y., 503(2008)