DOI QR코드

DOI QR Code

Bioinformatic approaches for the structure and function of membrane proteins

  • Nam, Hyun-Jun (School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology) ;
  • Jeon, Jou-Hyun (Division of Molecular and Life Science, Pohang University of Science and Technology) ;
  • Kim, Sang-Uk (School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology)
  • Published : 2009.11.30

Abstract

Membrane proteins play important roles in the biology of the cell, including intercellular communication and molecular transport. Their well-established importance notwithstanding, the high-resolution structures of membrane proteins remain elusive due to difficulties in protein expression, purification and crystallization. Thus, accurate prediction of membrane protein topology can increase the understanding of membrane protein function. Here, we provide a brief review of the diverse computational methods for predicting membrane protein structure and function, including recent progress and essential bioinformatics tools. Our hope is that this review will be instructive to users studying membrane protein biology in their choice of appropriate bioinformatics methods.

Keywords

References

  1. Hopkins, A. L. and Groom, C. R. (2002) The druggable genome. Nat. Rev. Drug. Discov. 1, 727-730 https://doi.org/10.1038/nrd892
  2. Franklin, M. C., Carey, K. D., Vajdos, F. F., Leahy, D. J., de Vos, A. M. and Sliwkowski, M. X. (2004) Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 5, 317-328 https://doi.org/10.1016/S1535-6108(04)00083-2
  3. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G.,Bhat, T. N., Weissig, H., Shindyalov, I. N. and Bourne, P. E. (2000) The protein data bank. Nucleic. Acids Res. 28, 235-242 https://doi.org/10.1093/nar/28.1.235
  4. White, S. H. (2004) The progress of membrane protein structure determination. Protein Sci. 13, 1948-1949 https://doi.org/10.1110/ps.04712004
  5. Thaminy, S., Auerbach, D., Arnoldo, A. and Stagljar, I. (2003) Identification of novel ErbB3-interacting factors using the split-ubiquitin membrane yeast two-hybrid system. Genome Res. 13, 1744-1753 https://doi.org/10.1101/gr.1276503
  6. Santoni, V., Molloy, M. and Rabilloud, T. (2000) Membrane proteins and proteomics: un amour impossible? Electrophoresis 21, 1054-1070 https://doi.org/10.1002/(SICI)1522-2683(20000401)21:6<1054::AID-ELPS1054>3.0.CO;2-8
  7. Buttner, K., Bernhardt, J., Scharf, C., Schmid, R., Mader, U., Eymann, C., Antelmann, H., Volker, A., Volker, U. and Hecker, M. (2001) A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis. Electrophoresis 22, 2908-2935 https://doi.org/10.1002/1522-2683(200108)22:14<2908::AID-ELPS2908>3.0.CO;2-M
  8. Bowie, J. U. (2005) Solving the membrane protein folding problem. Nature 438, 581-589 https://doi.org/10.1038/nature04395
  9. White, S. H., Ladokhin, A. S., Jayasinghe, S. and Hristova, K. (2001) How membranes shape protein structure. J. Biol. Chem. 276, 32395-32398 https://doi.org/10.1074/jbc.R100008200
  10. Kyte, J. and Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105-132 https://doi.org/10.1016/0022-2836(82)90515-0
  11. von Heijne, G. and Blomberg, C. (1979) Trans-membrane translocation of proteins. The direct transfer model. Eur. J. Biochem. 97, 175-181 https://doi.org/10.1111/j.1432-1033.1979.tb13100.x
  12. Engelman, D. M. and Steitz, T. A. (1981) The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell 23, 411-422 https://doi.org/10.1016/0092-8674(81)90136-7
  13. Engelman, D. M., Steitz, T. A. and Goldman, A. (1986) Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu. Rev. Biophys. Biophys. Chem. 15, 321-353 https://doi.org/10.1146/annurev.bb.15.060186.001541
  14. Wimley, W. C. and White, S. H. (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol. 3, 842-848 https://doi.org/10.1038/nsb1096-842
  15. Jayasinghe, S., Hristova, K. and White, S. H. (2001) Energetics, stability, and prediction of transmembrane helices. J. Mol. Biol. 312, 927-934 https://doi.org/10.1006/jmbi.2001.5008
  16. Wallin, E., Tsukihara, T., Yoshikawa, S., von Heijne, G. and Elofsson, A. (1997) Architecture of helix bundle membrane proteins: an analysis of cytochrome c oxidase from bovine mitochondria. Protein Sci. 6, 808-815 https://doi.org/10.1002/pro.5560060407
  17. Weiss, M. S., Kreusch, A., Schiltz, E., Nestel, U., Welte, W., Weckesser, J. and Schulz, G. E. (1991) The structure of porin from Rhodobacter capsulatus at 1.8 A resolution. FEBS Lett. 280, 379-382 https://doi.org/10.1016/0014-5793(91)80336-2
  18. von Heijne, G. (1992) Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 225, 487-494 https://doi.org/10.1016/0022-2836(92)90934-C
  19. Zhou, H. and Zhou, Y. (2003) Predicting the topology of transmembrane helical proteins using mean burial propensity and a hidden-Markov-model-based method. Protein Sci. 12, 1547-1555 https://doi.org/10.1110/ps.0305103
  20. Klein, P., Kanehisa, M. and DeLisi, C. (1985) The detection and classification of membrane-spanning proteins. Biochim. Biophys. Acta. 815, 468-476 https://doi.org/10.1016/0005-2736(85)90375-X
  21. Hirokawa, T., Boon-Chieng, S. and Mitaku, S. (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14, 378-379 https://doi.org/10.1093/bioinformatics/14.4.378
  22. Juretic, D., Zoranic, L. and Zucic, D. (2002) Basic charge clusters and predictions of membrane protein topology. J. Chem. Inf. Comput. Sci. 42, 620-632 https://doi.org/10.1021/ci010263s
  23. Hofmann, K. and Stoffel, W. (1993) TMBASE - A database of membrane spanning protein segments. Biol. Chem. Hoppe-Seyler 374, 166
  24. Rost, B., Casadio, R., Fariselli, P. and Sander, C. (1995) Transmembrane helices predicted at 95% accuracy. Protein Sci. 4, 521-533 https://doi.org/10.1002/pro.5560040318
  25. Tusnady, G. E. and Simon, I. (1998) Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J. Mol. Biol. 283, 489-506 https://doi.org/10.1006/jmbi.1998.2107
  26. Krogh, A., Larsson, B., von Heijne, G. and Sonnhammer, E. L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567-580 https://doi.org/10.1006/jmbi.2000.4315
  27. Rost, B., Fariselli, P. and Casadio, R. (1996) Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci. 5, 1704-1718 https://doi.org/10.1002/pro.5560050824
  28. Sonnhammer, E. L., von Heijne, G. and Krogh, A. (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6, 175-182
  29. Chen, C. P., Kernytsky, A. and Rost, B. (2002) Transmembrane helix predictions revisited. Protein Sci. 11, 2774-2791 https://doi.org/10.1110/ps.0214502
  30. Ikeda, M., Arai, M., Lao, D. M. and Shimizu, T. (2002) Transmembrane topology prediction methods: a re-assessment and improvement by a consensus method using a dataset of experimentally-characterized transmembrane topologies. In Silico. Biol. 2, 19-33
  31. Jayasinghe, S., Hristova, K. and White, S. H. (2001) MPtopo: a database of membrane protein topology. Protein Sci. 10, 455-458 https://doi.org/10.1110/ps.43501
  32. Cuthbertson, J. M., Doyle, D. A. and Sansom, M. S. (2005) Transmembrane helix prediction: a comparative evaluation and analysis. Protein Eng. Des. Sel. 18, 295-308 https://doi.org/10.1093/protein/gzi032
  33. Moller, S., Croning, M. D. and Apweiler, R. (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17, 646-653 https://doi.org/10.1093/bioinformatics/17.7.646
  34. Tusnady, G. E. and Simon, I. (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17, 849-850 https://doi.org/10.1093/bioinformatics/17.9.849
  35. Persson, B. and Argos, P. (1997) Prediction of membrane protein topology utilizing multiple sequence alignments. J. Protein Chem. 16, 453-457 https://doi.org/10.1023/A:1026353225758
  36. Jones, D. T., Taylor, W. R. and Thornton, J. M. (1994) A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 33, 3038-3049 https://doi.org/10.1021/bi00176a037
  37. Nilsson, J., Persson, B. and von Heijne, G. (2000) Consensus predictions of membrane protein topology. FEBS Lett. 486, 267-269 https://doi.org/10.1016/S0014-5793(00)02321-8
  38. Nilsson, J., Persson, B. and Von Heijne, G. (2002) Prediction of partial membrane protein topologies using a consensus approach. Protein Sci. 11, 2974-2980 https://doi.org/10.1110/ps.0226702
  39. Xia, J. X., Ikeda, M. and Shimizu, T. (2004) ConPred_elite: a highly reliable approach to transmembrane topology predication. Comput. Biol. Chem. 28, 51-60 https://doi.org/10.1016/j.compbiolchem.2003.11.002
  40. Arai, M., Mitsuke, H., Ikeda, M., Xia, J. X., Kikuchi, T., Satake, M. and Shimizu, T. (2004) ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability. Nucleic. Acids. Res. 32, W390-393 https://doi.org/10.1093/nar/gkh380
  41. Bernsel, A., Viklund, H., Hennerdal, A. and Elofsson, A. (2009) TOPCONS: consensus prediction of membrane protein topology. Nucleic. Acids. Res. 37, w465-468 https://doi.org/10.1093/nar/gkp363
  42. Claros, M. G. and von Heijne, G. (1994) TopPred II: an improved software for membrane protein structure predictions. Comput. Appl. BioSci. 10, 685-686
  43. Cserzo, M., Wallin, E., Simon, I., von Heijne, G. and Elofsson, A. (1997) Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 10, 673-676 https://doi.org/10.1093/protein/10.6.673
  44. Viklund, H. and Elofsson, A. (2008) OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 24, 1662-1668 https://doi.org/10.1093/bioinformatics/btn221
  45. Viklund, H. and Elofsson, A. (2004) Best alpha-helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary information. Protein Sci. 13, 1908-1917 https://doi.org/10.1110/ps.04625404
  46. Bernsel, A., Viklund, H., Falk, J., Lindahl, E., von Heijne, G. and Elofsson, A. (2008) Prediction of membrane-protein topology from first principles. Proc. Natl. Acad. Sci. U. S. A. 105, 7177-7181 https://doi.org/10.1073/pnas.0711151105
  47. Kall, L., Krogh, A. and Sonnhammer, E. L. (2005) An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 21 Suppl 1, i251-257 https://doi.org/10.1093/bioinformatics/bti1014
  48. Jones, D. T. (2007) Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23, 538-544 https://doi.org/10.1093/bioinformatics/btl677
  49. Shen, H. and Chou, J. J. (2008) MemBrain: improving the accuracy of predicting transmembrane helices. PLoS ONE 3, e2399 https://doi.org/10.1371/journal.pone.0002399
  50. Pellegrini, M., Marcotte, E. M., Thompson, M. J., Eisenberg, D. and Yeates, T. O. (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl. Acad. Sci. U. S. A. 96, 4285-4288 https://doi.org/10.1073/pnas.96.8.4285
  51. Shimizu, T., Mitsuke, H., Noto, K. and Arai, M. (2004) Internal gene duplication in the evolution of prokaryotic transmembrane proteins. J. Mol. Biol. 339, 1-15 https://doi.org/10.1016/j.jmb.2004.03.048
  52. Liu, Y., Gerstein, M. and Engelman, D. M. (2004) Transmembrane protein domains rarely use covalent domain recombination as an evolutionary mechanism. Proc. Natl. Acad. Sci. U. S. A. 101, 3495-3497 https://doi.org/10.1073/pnas.0307330101
  53. Nishimura, K., Kim, S., Zhang, L. and Cross, T. A. (2002) The closed state of a H+ channel helical bundle combining precise orientational and distance restraints from solid state NMR. Biochemistry 41, 13170-13177 https://doi.org/10.1021/bi0262799
  54. Kim, S., Quine, J. R. and Cross, T. A. (2001) Complete cross-validation and R-factor calculation of a solid-state NMR derived structure. J. Am. Chem. Soc. 123, 7292-7298 https://doi.org/10.1021/ja003380x
  55. Wang, J., Kim, S., Kovacs, F. and Cross, T. A. (2001) Structure of the transmembrane region of the M2 protein H(+) channel. Protein Sci. 10, 2241-2250 https://doi.org/10.1110/ps.17901
  56. Kim, S. and Cross, T. A. (2002) Uniformity, ideality, and hydrogen bonds in transmembrane alpha-helices. Biophys. J. 83, 2084-2095 https://doi.org/10.1016/S0006-3495(02)73969-6
  57. Opella, S. J. and Marassi, F. M. (2004) Structure determination of membrane proteins by NMR spectroscopy. Chem. Rev. 104, 3587-3606 https://doi.org/10.1021/cr0304121
  58. Fleishman, S. J., Unger, V. M., Yeager, M. and Ben-Tal, N. (2004) A Calpha model for the transmembrane alpha helices of gap junction intercellular channels. Mol. Cell. 15, 879-888
  59. Fleishman, S. J., Harrington, S. E., Enosh, A., Halperin, D., Tate, C. G. and Ben-Tal, N. (2006) Quasi-symmetry in the cryo-EM structure of EmrE provides the key to modeling its transmembrane domain. J. Mol. Biol. 364, 54-67 https://doi.org/10.1016/j.jmb.2006.08.072
  60. Fleishman, S. J., Unger, V. M. and Ben-Tal, N. (2006) Transmembrane protein structures without X-rays. Trends Biochem. Sci. 31, 106-113 https://doi.org/10.1016/j.tibs.2005.12.005
  61. Arbely, E., Kass, I. and Arkin, I. T. (2003) Site-specific dichroism analysis utilizing transmission FTIR. Biophys. J. 85, 2476-2483 https://doi.org/10.1016/S0006-3495(03)74670-0
  62. Mukherjee, P., Kass, I., Arkin, I. T. and Zanni, M. T. (2006) Picosecond dynamics of a membrane protein revealed by 2D IR. Proc. Natl. Acad. Sci. U. S. A. 103, 3528-3533 https://doi.org/10.1073/pnas.0508833103
  63. Mukherjee, P., Kass, I., Arkin, I. T. and Zanni, M. T. (2006) Structural disorder of the CD3zeta transmembrane domain studied with 2D IR spectroscopy and molecular dynamics simulations. J. Phys. Chem. B. 110, 24740-24749 https://doi.org/10.1021/jp0640530
  64. Yohannan, S., Faham, S., Yang, D., Whitelegge, J. P. and Bowie, J. U. (2004) The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors. Proc. Natl. Acad. Sci. U. S. A. 101, 959-963 https://doi.org/10.1073/pnas.0306077101
  65. MacKenzie, K. R., Prestegard, J. H. and Engelman, D. M. (1997) A transmembrane helix dimer: structure and implications. Science 276, 131-133 https://doi.org/10.1126/science.276.5309.131
  66. Kim, S., Jeon, T. J., Oberai, A., Yang, D., Schmidt, J. J. and Bowie, J. U. (2005) Transmembrane glycine zippers: physiological and pathological roles in membrane proteins. Proc. Natl. Acad. Sci. U. S. A. 102, 14278-14283 https://doi.org/10.1073/pnas.0501234102
  67. Plotkowski, M. L., Kim, S., Phillips, M. L., Partridge, A. W., Deber, C. M. and Bowie, J. U. (2007) Transmembrane domain of myelin protein zero can form dimers: possible implications for myelin construction. Biochemistry 46, 12164-12173 https://doi.org/10.1021/bi701066h
  68. Barwe, S. P., Kim, S., Rajasekaran, S. A., Bowie, J. U. and Rajasekaran, A. K. (2007) Janus model of the Na,K-ATPase beta-subunit transmembrane domain: distinct faces mediate alpha/beta assembly and beta-beta homo-oligomerization. J. Mol. Biol. 365, 706-714 https://doi.org/10.1016/j.jmb.2006.10.029
  69. Reiersen, H. and Rees, A. R. (2001) The hunchback and its neighbours: proline as an environmental modulator. Trends Biochem. Sci. 26, 679-684 https://doi.org/10.1016/S0968-0004(01)01957-0
  70. Bright, J. N., Shrivastava, I. H., Cordes, F. S. and Sansom, M. S. (2002) Conformational dynamics of helix S6 from Shaker potassium channel: simulation studies. Biopolymers 64, 303-313 https://doi.org/10.1002/bip.10197
  71. Tieleman, D. P., Shrivastava, I. H., Ulmschneider, M. R. and Sansom, M. S. (2001) Proline-induced hinges in transmembrane helices: possible roles in ion channel gating. Proteins 44, 63-72 https://doi.org/10.1002/prot.1073
  72. Jin, T., Peng, L., Mirshahi, T., Rohacs, T., Chan, K. W., Sanchez, R. and Logothetis, D. E. (2002) The (beta) gamma subunits of G proteins gate a K(+) channel by pivoted bending of a transmembrane segment. Mol. Cell. 10, 469-481
  73. Wigley, W. C., Corboy, M. J., Cutler, T. D., Thibodeau, P. H., Oldan, J., Lee, M. G., Rizo, J., Hunt, J. F. and Thomas, P. J. (2002) A protein sequence that can encode native structure by disfavoring alternate conformations. Nat. Struct. Biol. 9, 381-388
  74. Lasso, G., Antoniw, J. F. and Mullins, J. G. (2006) A combinatorial pattern discovery approach for the prediction of membrane dipping (re-entrant) loops. Bioinformatics 22, e290-297 https://doi.org/10.1093/bioinformatics/btl209
  75. Rapp, M., Granseth, E., Seppala, S. and von Heijne, G. (2006) Identification and evolution of dual-topology membrane proteins. Nat. Struct. Mol. Biol. 13, 112-116 https://doi.org/10.1038/nsmb1057
  76. Bowie, J. U. (2006) Flip-flopping membrane proteins. Nat. Struct. Mol Biol. 13, 94-96 https://doi.org/10.1038/nsmb0206-94
  77. Choi, S., Jeon, J., Yang, J. S. and Kim, S. (2008) Common occurrence of internal repeat symmetry in membrane proteins. Proteins 71, 68-80 https://doi.org/10.1002/prot.21656
  78. Jeon, J., Yang, J. S. and Kim, S. (2009) Integration of evolutionary features for the identification of functionally important residues in Major Facilitator Superfamily (MFS) transporters. PLoS Comput. Biol. 5, e1000522 https://doi.org/10.1371/journal.pcbi.1000522
  79. Tang, S., Liao, J. C., Dunn, A. R., Altman, R. B., Spudich, J. A. and Schmidt, J. P. (2007) Predicting allosteric communication in myosin via a pathway of conserved residues. J. Mol. Biol. 373, 1361-1373 https://doi.org/10.1016/j.jmb.2007.08.059
  80. Suel, G. M., Lockless, S. W., Wall, M. A. and Ranganathan, R. (2003) Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol. 10, 59-69 https://doi.org/10.1038/nsb881
  81. Lao, D. M. and Shimizu, T. (2001) A method for discriminating a signal peptide and a putative 1st transmembrane segment. Proceedings of the 2001 International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences - METMBS '01. pp. 119-125, CSREA Press, USA
  82. Lao, D. M., Arai, M., Ikeda, M. and Shimizu, T. (2002) The presence of signal peptide significantly affects transmembrane topology prediction. Bioinformatics 18, 1562- 566 https://doi.org/10.1093/bioinformatics/18.12.1562
  83. Kall, L., Krogh, A. and Sonnhammer, E. L. (2004) A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol. 338, 1027-1036 https://doi.org/10.1016/j.jmb.2004.03.016
  84. Walz, T., Hirai, T., Murata, K., Heymann, J. B., Mitsuoka, K., Fujiyoshi, Y., Smith, B. L., Agre, P. and Engel, A. (1997) The three-dimensional structure of aquaporin-1. Nature 387, 624-627 https://doi.org/10.1038/42512
  85. Doyle, D. A., Morais Cabral, J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T. and MacKinnon, R. (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69-77 https://doi.org/10.1126/science.280.5360.69
  86. Granseth, E., Viklund, H. and Elofsson, A. (2006) ZPRED: predicting the distance to the membrane center for residues in alpha-helical membrane proteins. Bioinformatics 22, e191-196 https://doi.org/10.1093/bioinformatics/btl206
  87. von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P. and Snel, B. (2003) STRING: a database of predicted functional associations between proteins. Nucleic. Acids. Res. 31, 258-261 https://doi.org/10.1093/nar/gkg034

Cited by

  1. A class of rigid linker-bearing glucosides for membrane protein structural study vol.7, pp.3, 2016, https://doi.org/10.1039/C5SC02900G
  2. Conformationally Preorganized Diastereomeric Norbornane-Based Maltosides for Membrane Protein Study: Implications of Detergent Kink for Micellar Properties vol.139, pp.8, 2017, https://doi.org/10.1021/jacs.6b11997
  3. A Novel Metal Transporter Mediating Manganese Export (MntX) Regulates the Mn to Fe Intracellular Ratio and Neisseria meningitidis Virulence vol.7, pp.9, 2011, https://doi.org/10.1371/journal.ppat.1002261
  4. Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: What have we learned to date? vol.564, 2014, https://doi.org/10.1016/j.abb.2014.02.011
  5. Critical assessment of high-throughput standalone methods for secondary structure prediction vol.12, pp.6, 2011, https://doi.org/10.1093/bib/bbq088
  6. Predicting membrane protein types by incorporating protein topology, domains, signal peptides, and physicochemical properties into the general form of Chou’s pseudo amino acid composition vol.318, 2013, https://doi.org/10.1016/j.jtbi.2012.10.033
  7. Sequence–structure relationship study in all-α transmembrane proteins using an unsupervised learning approach vol.47, pp.11, 2015, https://doi.org/10.1007/s00726-015-2010-5
  8. Single-spanning transmembrane domains in cell growth and cell-cell interactions vol.4, pp.2, 2010, https://doi.org/10.4161/cam.4.2.12430
  9. Novel Xylene-Linked Maltoside Amphiphiles (XMAs) for Membrane Protein Stabilisation vol.21, pp.28, 2015, https://doi.org/10.1002/chem.201501083
  10. Bioinformatics approaches for functional annotation of membrane proteins vol.15, pp.2, 2014, https://doi.org/10.1093/bib/bbt015
  11. Membrane protein structure determination — The next generation vol.1838, pp.1, 2014, https://doi.org/10.1016/j.bbamem.2013.07.010
  12. Metazoans evolved by taking domains from soluble proteins to expand intercellular communication network vol.5, pp.1, 2015, https://doi.org/10.1038/srep09576
  13. Early Cold-Induced Peroxidases and Aquaporins Are Associated With High Cold Tolerance in Dajiao (Musa spp. ‘Dajiao’) vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00282
  14. An Engineered Lithocholate-Based Facial Amphiphile Stabilizes Membrane Proteins: Assessing the Impact of Detergent Customizability on Protein Stability vol.24, pp.39, 2018, https://doi.org/10.1002/chem.201801141