루테늄이 치환된 SBA-15(Ru-SBA-15)의 질소 및 산소 흡착 거동

Nitrogen and Oxygen Sorption Behaviors of Ruthenium-Substituted SBA 15(Ru-SBA-15)

  • 서윤아 (부산대학교 고분자공학과) ;
  • 김형국 (부산대학교 나노정보소재공학과) ;
  • 신정훈 (부산대학교 고분자공학과) ;
  • 김일 (부산대학교 고분자공학과) ;
  • 하창식 (부산대학교 고분자공학과)
  • Seo, Yoon-Ah (Department of Polymer Science and Engineering, Pusan National University) ;
  • Kim, Hyung Kook (Department of Nanomaterials Engineering, Pusan National University) ;
  • Shin, Jeong Hun (Department of Polymer Science and Engineering, Pusan National University) ;
  • Kim, Il (Department of Polymer Science and Engineering, Pusan National University) ;
  • Ha, Chang-Sik (Department of Polymer Science and Engineering, Pusan National University)
  • 투고 : 2009.05.18
  • 심사 : 2009.08.18
  • 발행 : 2009.10.31

초록

본 연구에서는, 비이온성 삼원공중합체 계면활성제인 $EO_{20}PO_{70}EO_{20}$를 주형으로 사용해, 다양한 Si/Ru 몰 비의 루테늄이 치환된 SBA-15들(Ru-SBA-15)을 합성하였다. 촉매 또는 선택적 흡착제 등으로써의 응용가능성을 검토하기 위해 Ru-SBA-15의 질소 또는 산소 흡착/탈착 거동을 조사하였다. Ru-SBA-15의 기공 크기는 Barrett-Joyner-Halenda(BJH) 및 Broekhoff-de Boer/Frenkel-Halsey-Hill isotherm(BdB-FHH) 방법($D_{BdB-FHH}$)을 이용하여 결정하였다. Si/Ru 비율이 50/1인 Ru-SBA 15의 $D_{BJH}$$D_{BdB-FHH}$는 각각 3.9, 4.7 nm였다. 투과전자현미경(TEM) 관찰에 의해 Si/Ru의 몰비율이 50인 Ru-SBA 15의 기공 크기는 4.7 nm로 나타났고, 이것은 BdB-FHH 방법을 사용한 $N_2$ 흡착 결과와 일치하였다. 산소 흡착/탈착 등온선으로부터 얻은 Brunauer-Emmett-Teller(BET) 기공 표면적은 질소의 흡착/탈착 등온선으로부터의 기공 표면적보다 높았는데, 각각 $612.7m^2/g$, 그리고 $573.3m^2/g$이었다. X선 회절(XRD) 패턴과 TEM 분석에 의해 본 연구에서 합성한 Ru-SBA-15는 잘 정렬된 육방정계 정렬을 가지는 것을 알 수 있었다.

In this work, ruthenium substituted SBA-15's(Ru-SBA15's) of various Si/Ru ratios were prepared using a non-ionic triblock copolymer surfactant, $EO_{20}PO_{70}EO_{20}$, as template. We investigated the nitrogen or oxygen adsorption/desorption behaviors of the Ru-SBA-15's for their future applications as catalysts or selective adsorbents, etc. The pore size of the Ru-SBA-15's was determined by both the Barrett-Joyner-Halenda(BJH)($D_{BJH}$) and the Broekhoff-de Boer analysis with a Frenkel-Halsey-Hill isotherm(BdB-FFF) method($D_{BdB-FHH}$). The $D_{BJH}$ and $D_{BdB-FHH}$ of the Ru-SBA-15 having 50/1 ratio of Si/Ru were 3.9 nm and 4.7 nm, respectively. The transmission electron microscope(TEM) image of the Ru-SBA 15 of the Si/Ru mole ratio of 50 showed that the pore size is 4.7 nm, which is consistent with the $N_2$ adsorption results with the BdB-FHH method. The surface area of pores form oxygen adsorption/desorption isotherm was higher than that from the nitrogen adsorption/desorption isotherm by the Brunauer-Emmett-Teller(BET) method, which were respectively $612.7m^2/g$, and $573.3m^2/g$. X-ray diffraction(XRD) patterns and TEM analyses showed that the mesoporous materials possess well-ordered hexagonal arrays.

키워드

과제정보

연구 과제 주관 기관 : 교육과학기술부

참고문헌

  1. Liu, A. M., Hidajat, K., Kawi, S. and Zhao, D. Y., 'A New Class of Hybrid Mesoporous Materials with Functionalized Organic Monolayers for Selective Adsorption of Heavy Metal Ions,' Chem. Commun, 1145-1146(2000)
  2. Feng, X., Fryxell, G. E., Wang, L. Q., Kim, A. Y., Liu, J. and Kemner, K. M., "Functionalized Monolayers on Ordered Mesoporous Supports," Science, 276, 923-926(1997) https://doi.org/10.1126/science.276.5314.923
  3. Luan, Z., Bae, J. Y. and Kevan, L., "Vanadosilicate Mesoporous SBA-15 Molecular Sieves Incorporated with N-Alkylphenothiazines," Chem.Mater., 12, 3202-3207(2000) https://doi.org/10.1021/cm000318q
  4. Mercier, L. and Pinnavaia, T. J., "Access in Mesoporous Materials: Advantages of a Uniform Pore Structure in the Design of a Heavy Metal Ion Adsorbent for Environmental Remediation," Adv. Mater., 9, 500-503(1997) https://doi.org/10.1002/adma.19970090611
  5. Moller, K. and Bein, T., "Inclusion Chemistry in Periodic Mesoporous Hosts," Chem. Mater., 10, 2950-2963(1998) https://doi.org/10.1021/cm980243e
  6. Fowler, C. E., Lebeau, B. and Mann, S., 'Covalent Coupling of an Organic Chromophore into Functionalized MCM-41 Mesophases by Template-Directed Co-Condensation,' Chem. Commun., 1825- 1826(1998)
  7. Lim, M. H., Blanford, C. F. and Stein, A. J., "Synthesis and Characterization of a Reactive Vinyl-Functionalized MCM-41: Probing the Internal Pore Structure by a Bromination Reaction," J. Am. Chem. Soc., 119, 4090-4091(1997) https://doi.org/10.1021/ja9638824
  8. Oh, J., Imail, H. and Hirashima, H., "Direct Deposition of Mesoscopically Assembled Dye-Doped Silica Films from Aqueous Solutions of Silicon Alkoxides," Chem. Mater., 10, 1582-1588(1998) https://doi.org/10.1021/cm970828t
  9. Wu, C. G. and Bein, T., "Conducting Polyaniline Filaments in a Mesoporous Channel Host," Science, 264, 1757-1579(1994) https://doi.org/10.1126/science.264.5166.1757
  10. Wu, C. G. and Bein, T., "Conducting Carbon Wires in Ordered, Nanometer-Sized Channels," Science, 266, 1013-1015(1994) https://doi.org/10.1126/science.266.5187.1013
  11. Honma, I. and Zhou, H. S., "Self-Assembling Functional Molecules in Mesoporous Silicate Materials: Optical Properties and Mesophase of Dye-Doped M41S," Adv. Mater., 10, 1532-1536(1998) https://doi.org/10.1002/(SICI)1521-4095(199812)10:18<1532::AID-ADMA1532>3.0.CO;2-S
  12. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F. and Stucky, G. D., "Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores," Science, 279, 548-552(1998) https://doi.org/10.1126/science.279.5350.548
  13. Balogh, M. and Laszlo, P., "Organic Chemistry Using Clays," Springer-Verlag, Berlin, pp. 77(1993)
  14. Shelef, M. and Gandhi, H. S., "Ammonia Formation in Catalytic Reduction of Nitric Oxide by Molecular Hydrogen. II. Noble Metal Catalysts," Ind. Eng. Chem., Pro. Res. Dev. 11, 393-396(1972) https://doi.org/10.1021/i360044a006
  15. Nijs, H., Jacobs, P. A. and Uytterhoeven, J. B., 'Chain Llimitation of Fischer-Tropsch Products in Zeolites, ' J. Chem. Soc. Chem. Commun., 180-181(1979)
  16. Pecoraro, T. A. and Chianelli, R. R., "Hydrodesulfurization Catalysis by Transition Metal Sulfides," J. Catal., 67, 430-445(1981) https://doi.org/10.1016/0021-9517(81)90303-1
  17. Mitchell, P. C. H., Scott, C. E., Bonnelle, J. P. and Grimblot, J. G., "Ru/Alumina and Ru-Mo/Alumina Catalysts: An XPS study," J. Catal., 107, 482-489(1987) https://doi.org/10.1016/0021-9517(87)90312-5
  18. Kuo, Y.-J., Cocco, R. A. and Tatarchuk, B. J., "Hydrogenation and Hydrodesulfurization over Sulfided Ruthenium Catalysts: II. Impact of Surface Phase Behavior on Activity and Selectivity," J. Catal., 112, 250-266(1988) https://doi.org/10.1016/0021-9517(88)90138-8
  19. Kuo, Y.-J. and Tatarchuk, B. J., "Hydrogenation and Hydrodesulfurization over Sulfided Ruthenium Catalysts: I. Catalysts Containing Partial Monolayers of Adsorbed Sulfur," J. Catal., 112, 229- 249(1988) https://doi.org/10.1016/0021-9517(88)90137-6
  20. Vannice, M. A. and Catal, "The Catalytic Synthesis of Hydrocarbons from Carbon Monoxide and Hydrogen," Rev-Sci. Eng., 14, 153-191(1976) https://doi.org/10.1080/03602457608073410
  21. Vannice, M. A., "The Catalytic Synthesis of Hydrocarbons from $H_{2}$/CO Mixtures over the Group VIII Metals: IV. The Kinetic Behavior of CO Hydrogenation over Ni Catalysts," J. Catal., 44, 152-162(1976) https://doi.org/10.1016/0021-9517(76)90384-5
  22. Lam, Y. L. and Sinfelt, J. H., "Cyclohexane Conversion on Ruthenium Catalysts of Widely Varying Dispersion," J. Catal., 42, 319- 322(1976) https://doi.org/10.1016/0021-9517(76)90268-2
  23. Dalla Betta, R. A., "Carbon Monoxide Adsorption on Supported Ruthenium," J. Phys. Chem., 79, 2519-2525(1975) https://doi.org/10.1021/j100590a015
  24. Yang, C. H. and Goodwin, J. G., "Particle Size Dependence for CO Chemisorption on Supported Ru Catalysts," React. Kinet. Catal. Lett., 20, 13-18(1982) https://doi.org/10.1007/BF02063576
  25. Sayari, A., Wang, H. T. and Goodwin, J. G., "Surface Structure Dependence of Reversible/Weak $H_{2}$ Chemisorption on Supported Ru," J. Catal., 93, 368-374(1985) https://doi.org/10.1016/0021-9517(85)90184-8
  26. Cui, X., Zin, W. C., Cho, W. J. and Ha, C. S., "Nonionic Triblock Copolymer Synthesis of SBA-15 above the Isoelectric Point of Silica (pH = 2–5)," Mater. Lett., 59, 2257-2261(2005) https://doi.org/10.1016/j.matlet.2005.02.073
  27. Newalkar, B. L., Olanrewaju, J. and Komarneni, S., "Direct Synthesis of Titanium-Substituted Mesoporous SBA-15 Molecular Sieve under MicrowaveHydrothermal Conditions," Chem. Mater., 13, 552-557(2001) https://doi.org/10.1021/cm000748g
  28. Kim, M. Y., Jung, S. B., Kim, M. G., Yuo, J. S., Park, J. H., Shin, C. H. and Seo, G., "Preparation of Highly Dispersive and Stable Platinum Catalysts Supported on Siliceous SBA-15 Mesoporous Material: Roles of Titania Layer Incorporation and Hydrogen Peroxide Treatment," Cat. Lett., 129, 194-206(2009) https://doi.org/10.1007/s10562-008-9790-0
  29. Kim, M. Y., You, Y. S., Han, H. S. and Seo, G., "Preparation of Highly Dispersive Platinum Catalysts Impregnated on Titaniaincorporated Silica Support," Cat. Lett., 120, 40-47(2008) https://doi.org/10.1007/s10562-007-9246-y
  30. Barrett, E. P., Joyner, L. G. and Halenda, P. P., "The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms," J. Am.Chem. Soc., 73, 373-380(1951) https://doi.org/10.1021/ja01145a126
  31. Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscow, L., Pierotti, R. A., Rouquerol, J. and Siemieniewska, T. "Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity," Pure Appl. Chem., 57, 603-619(1985) https://doi.org/10.1351/pac198557040603
  32. (a) Gregg, S. J. and Sing, K. S. W., Adsorption, Surface Area and Porosity, Academic Press, London, pp. 2-120(1982), (b) Brunauer, S., Emmett, P. H. and Teller, E., "Adsorption of Gases in Multimolecular Layers", J. Am. Chem. Soc., 60, 309-319 (1938); (c) Langmuir, I., "The Constitution and Fundamental Properties of Solids and Liquids," J. Am. Chem.Soc., 38, 2221-2295(1916); (d) Defay, R., Prigogine I., Bellemans, A. and Everett, D. H., 'Surface Tension and Adsorption,' Longmans, London, pp. 218(1970)
  33. Luan, Z., Maes, E. M., Van der Heide, P. A. W., Zhao, D., Zernuszewicz, R. S. and Keven, L., "Incorporation of Titanium into Mesoporous Silica Molecular Sieve SBA-15," Chem. Mater., 11, 3680-3686(1999) https://doi.org/10.1021/cm9905141
  34. (a) Broekhoff, J. C. P. and de Boer, J. H., "Studies on Pore Systems in Catalysts : IX. Calculation of Pore Distributions from the Adsorption Branch of Nitrogen Sorption Isotherms in the Case of Open Cylindrical Pores A. Fundamental equations," J. Catal., 9, 8-14(1967); (b) Broekhoff, J. C. P. and de Boer, J. H., "Studies on pore systems in catalysts: X. Calculations of Pore Distributions from the Adsorption Branch of Nitrogen Sorption Isotherms in the Case of Open Cylindrical Pores B. Applications," J. Catal., 9, 15-27(1967) https://doi.org/10.1016/0021-9517(67)90175-3
  35. Ravikovitch, P. I., Wei, D., Chueh, W. T., Haller, G. L. and Neimark, A. V., "Evaluation of Pore Structure Parameters of MCM-41 Catalyst Supports and Catalysts by Means of Nitrogen and Argon Adsorption", J. Phys. Chem. B., 101, 3671-3679(1997) https://doi.org/10.1021/jp9625321
  36. Kruk, M., Jaroniec, M. and Sayari, A., In Proceedings of the 12th International Zeolite Conference; edited by Treacy, M. J., Marcus, B. K., Bisher, M. E. and Higgins, J. E., Materials Research Society, Warrendale, PA, pp. 761-766(1999)
  37. Lukens, W. W., S. W. Jr., Zhao, P. D., Feng, J. and Stucky, G. D., "Evaluating Pore Sizes in Mesoporous Materials: A Simplified Standard Adsorption Method and a Simplified Broekhoff - de Boer Method," Langmuir, 15, 5403-5409(1999) https://doi.org/10.1021/la990209u
  38. Kruk, M. and Jaroniec, M., "Characterization of Highly Ordered MCM-41 Silicas Using X-ray Diffraction and Nitrogen Adsorption," Langmiur, 15, 5279-5284(1999) https://doi.org/10.1021/la990179v
  39. Aronson, B. J., Blanford, C. F. and Stein, A., "Synthesis, Characterization, and Ion-Exchange Properties of Zinc and Magnesium Manganese Oxides Confined within MCM-41 Channels," J. Phys. Chem. B, 104(3), 449-459(2000) https://doi.org/10.1021/jp9920343
  40. Gomez, S., Giraldo, O., Garces, L. J., Villegas, J. and Suib, S. L., 'Synthetic Route for the Incorporation of Manganese Species into the Pores of MCM-48,' Chem. Mater., 16, 2411-2417(2007)
  41. Wahab, M. A. and Ha, C. S., "Ruthenium-Functionalized Hybrid Periodic Mesoporous Organosilicas: Synthesis and Structural Characterization," J. Mater. Chem., 15(4), 508-516(2005) https://doi.org/10.1039/b412637h
  42. Shen, S. C. and Kawi, S., "MCM-41 with Improved Hydrothermal Stability: Formation and Prevention of Al Content Dependent Structural Defects," Langmuir, 18(12), 4720-4728(2002) https://doi.org/10.1021/la0116140
  43. Park, J. W. and Seo, G., 'IR Study on Methanol-to-Olefin Reaction over Zeolites with Different Pore Structures and Acidities,' Appl. Catal. A-Gen., 356, 180-188(2009) https://doi.org/10.1016/j.apcata.2009.01.001
  44. Kim, M. H., Kim, S. J., Hong, S. B., Seo, G. and Uh, Y. S., "Temperature- programmed desorption Study of Molecular Oxygen Adsorbed on MFI-type Zeoloites," Korean J. Chem. Eng., 15, 566- 569(1998) https://doi.org/10.1007/BF02707112