나노기공성 Na2CO3/Al2O3 흡착제를 이용한 합성가스(CO2, H2) 내 CO2 제거

Removal of CO2 from Syngas(CO2 and H2) Using Nanoporous Na2CO3/Al2O3 Adsorbents

  • 배종수 (광운대학교 화학공학과) ;
  • 박주원 (광운대학교 화학공학과) ;
  • 김재호 (한국에너지기술연구원 가스화연구센터) ;
  • 이재구 (한국에너지기술연구원 가스화연구센터) ;
  • 김영훈 (광운대학교 화학공학과) ;
  • 한춘 (광운대학교 화학공학과)
  • Bae, Jong-Soo (Department of Chemical Engineering., Kwangwoon University) ;
  • Park, Joo-Won (Department of Chemical Engineering., Kwangwoon University) ;
  • Kim, Jae-Ho (Gasification Research Center, Korea Institute of Energy Research) ;
  • Lee, Jae-Goo (Gasification Research Center, Korea Institute of Energy Research) ;
  • Kim, Younghun (Department of Chemical Engineering., Kwangwoon University) ;
  • Han, Choon (Department of Chemical Engineering., Kwangwoon University)
  • 투고 : 2009.08.04
  • 심사 : 2009.08.26
  • 발행 : 2009.10.31

초록

폐기물가스화시 발생하는 탄화수소계 가스를 촉매개질하면 $CO_2$$H_2$로 전환되는데, 이때 잔류 $CO_2$를 선택적으로 흡착/제거하여 순수한 $H_2$를 생산하고자 하였다. $CO_2$ 제거를 위한 흡착제의 성능을 최적화하기 위해 $Na_2CO_3$를 나노기공성 알루미나에 담지시켰으며, 상용 알루미나(데구사)와의 성능을 비교하였다. 나노기공성 흡착제의 경우 상용화알루미나로 제조한 흡착제보다 균일한 기공 및 넓은 표면적을 가짐을 확인하였다. $Na_2CO_3$ 함량증가에 따라 $CO_2$ 흡착량은 증가하여, $Na_2CO_3$ 단위질량당 최대흡착량은 $20^{\circ}C$에서 20 wt%일 때 얻을 수 있었다. 담지량이 20 wt% 이상일 때는 잔류 $Na_2CO_3$가 알루미나 표면에 도포됨에 따라 기공부피가 감소하였다. 또한 흡착이 완료된 흡착제는 열처리를 통한 재생이 가능하였다.

Hydrocarbon gases generated from the gasification of waste could be converted into $CO_2$ and $H_2$ using reforming catalysts and then $CO_2$ was selectively adsorbed and removed to obtain pure hydrogen. To optimize adsorption efficiency for $CO_2$ removal, $Na_2CO_3$ was supported on nanoporous alumina and the efficiency was compared with commercial alumina(Degussa). Nanoporous adsorbents formed more uniform pores and larger surface area compared to adsorbents using commercial alumina. The increase of $Na_2CO_3$ loading improved adsorption of $CO_2$. Finally, the highest adsorption capacity per unit mass of $Na_2CO_3$ could be achieved when the loading of $Na_2CO_3$ reached up to 20wt%. When the content of $Na_2CO_3$ increased above 20 wt%, it aggregated on the surface, and the pore volume was decreased. Used adsorbents could be recycled by the thermal treatment.

키워드

과제정보

연구 과제 주관 기관 : 한국에너지기술연구원, 광운대학교

참고문헌

  1. Hassmann, K. and K$\ddot{u}$hne, H.-M., "Primary Energy Sources for Hydrogen Production," Int. J. Hydrogen Energy, 18, 635-640(1993) https://doi.org/10.1016/0360-3199(93)90115-Q
  2. Richterov$\acute{a}$, V., "Utilization of Secondary Energy Resources in Chemical Industry," Energy Convers. Manage., 24, 27-32(1984) https://doi.org/10.1016/0196-8904(84)90048-7
  3. Abe, I., Fujimaki, T. and Matsubara, M., "Hydrogen Production by High Temperature, High Pressure Water Electrolysis, Results of Test Plant Operation," Int. J. Hydrogen Energy, 9, 753-758(1984) https://doi.org/10.1016/0360-3199(84)90278-7
  4. Choudhary, T. V., Sivadinarayana, C., Klinghoffer, A. and Goodman, D. W., "Catalytic Decomposition of Methane: Towards Production of CO-Free Hydrogen for Fuel Cells," Stud. Surf. Sci. Catal., 136, 197-202(2001) https://doi.org/10.1016/S0167-2991(01)80303-7
  5. Sekine, Y., Asai, S., Kikuchi, E., Matsukata, M. and Haga, F., "Hydrogen Production from Biomass-Ethanol at Ambient Temperature with Novel Diaphragm Reactor," Stud. Surf. Sci. Catal., 159, 813-816(2006) https://doi.org/10.1016/S0167-2991(06)81721-0
  6. Kim, J.-K., Kim, Y., Park, J.-W., Bae, J.-S., Yoon, D.-Y., Lee, J.- G., Kim. J.-H. and Han, C., "Preparation of CuO-$CeO_{2}Al_{2}O_{3}$ Catalyst with Mesopore Structure for Water Gas Shift Reaction," Korean J. Chem. Eng., 26, 32-35(2009) https://doi.org/10.1007/s11814-009-0006-0
  7. Tosti, S., Basile, A., Chiappetta, G., Rizzello, C. and Violante, V., "Pd-Ag Membrane Reactors for Water Gas Shift Reaction," Chem. Eng., 93, 23-30(2003) https://doi.org/10.1016/S1385-8947(02)00113-4
  8. Morioka, H., Shimizu, Y., Sukenobu, M., Ito, K., Tanabe, E., Shishido, T. and Takehira, K., "Partial Oxidation of Methane to Synthesis Gas Over Supported Ni Catalysts Prepared from Ni- Ca/Al-Layered Double Hydroxide," Appl. Catal. A, 215, 11-19(2001) https://doi.org/10.1016/S0926-860X(01)00525-7
  9. Moon, K. I., Kim, C.-H., Choi, J.-S., Lee, S.-H., Kim, Y. G. and Lee, J. S., 'Carbon Dioxide Reforming of Methane over Nickel Based Catalysts I. Comparison with Steam Reforming,' HWAHAK KONGHAK, 35, 883-889(1997)
  10. Erdohelyi, A., Fodor, K. and Solymosi, K., "Reaction of CH4 with CO2 and H2O over Supported Ir Catalyst," Stud. Surf. Sci. Catal., 107, 525-530(1997) https://doi.org/10.1016/S0167-2991(97)80385-0
  11. Manuel, I., Chaubet, J., Thomas, C., Colas, H., Matthess, N. and Dj$\acute{e}$ga-Mariadassou, G., "Simulation of the Transient CO Oxidation over Rh0/$SIO_{2}$ and Rhx+/Ce0.68Zr0.32O2 Catalysts," J. Catal., 224, 269-277(2004) https://doi.org/10.1016/j.jcat.2004.03.011
  12. Grisel, R. J. H. and Nieuwenhuys, B. E., 'A Comparative Study of the Oxidation of CO and CH4 over Au/MOx/Al2O3 Catalysts,' Catal. Today, 64, 69-81(2001) https://doi.org/10.1016/S0920-5861(00)00510-1
  13. Martavaltzi, C. S. and Lemonidou, A. A., "Development of New CaO Based Sorbent Materials for $CO_{2}$ Removal at High Temperature," Micropor. Mesopor. Mater., 110, 119-127(2008) https://doi.org/10.1016/j.micromeso.2007.10.006
  14. Ochoa-Fern$\acute{a}$ndez, E., Rusten, H. K., Jakobsen, H. A., R$\phi$nning, M., Holmen, A. and Chen, D., "Sorption Enhanced Hydrogen Production by Steam Methane Reforming using Li2ZrO3 as Sorbent: Sorption Kinetics and Reactor Simulation," Catal. Today, 106, 41-46(2005) https://doi.org/10.1016/j.cattod.2005.07.146
  15. Kim, Y., Kim, C., Choi, I., Rengaraj, S. and Yi, J., "Arsenic Removal Using Mesoporous Alumina Prepared via a Templating Method," Environ. Sci. Technol., 38, 924-931(2004) https://doi.org/10.1021/es0346431