DOI QR코드

DOI QR Code

Biochemical characterization of Alanine racemase- a spore protein produced by Bacillus anthracis

  • Kanodia, Shivani (Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University) ;
  • Agarwal, Shivangi (Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University) ;
  • Singh, Priyanka (Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University) ;
  • Agarwal, Shivani (Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University) ;
  • Singh, Preeti (Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University) ;
  • Bhatnagar, Rakesh (Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University)
  • Published : 2009.01.31

Abstract

Alanine racemase catalyzes the interconversion of L-alanine and D-alanine and plays a crucial role in spore germination and cell wall biosynthesis. In this study, alanine racemase produced by Bacillus anthracis was expressed and purified as a monomer in Escherichia coli and the importance of lysine 41 in the cofactor binding octapeptide and tyrosine 270 in catalysis was evaluated. The native enzyme exhibited an apparent $K_m$ of 3 mM for L-alanine, and a $V_{max}$ of $295\;{\mu}moles/min/mg$, with the optimum activity occurring at $37^{\circ}C$ and a pH of 8-9. The activity observed in the absence of exogenous pyridoxal 5'-phosphate suggested that the cofactor is bound to the enzyme. Additionally, the UV-visible absorption spectra indicated that the activity was pH independece, of VV-visible absorption spectra suggests that the bound PLP exists as a protonated Schiff's base. Furthermore, the loss of activity observed in the apoenzyme suggested that bound PLP is required for catalysis. Finally, the enzyme followed non-competitive and mixed inhibition kinetics for hydroxylamine and propionate with a $K_i$of $160\;{\mu}M$ and 30 mM, respectively.

Keywords

References

  1. Saito, M., Nishimura, K., Hasegawa, Y., Shinohara, T., Wakabayashi, S., Kurihara, T., Ishizuka, M. and Nagata, Y. (2007) Alanine racemase from helicobacter pylori NCTC 11637: Purification, characterization and gene cloning. Life Sci. 80, 788-794 https://doi.org/10.1016/j.lfs.2006.11.005
  2. Strych, U., Huang, H.C., Krause, K.L. and Benedik, M.J. (2000) Characterization of the alanine racemase from Pseudomonas aeruginosa PAO1. Curr. Microbiol. 41, 290-294 https://doi.org/10.1007/s002840010136
  3. Inagaki, K., Tanizawa, K., Badet, B., Walsh, C.T., Tanaka, H. and Soda, K. (1986) Thermostable alanine racemase from Bacillus stearothermophilus: molecular cloning of the gene, enzyme purification and characterization. Biochem. 25, 3268-3274 https://doi.org/10.1021/bi00359a028
  4. Bjelakovic, G., Stojanovic, I., Bjelakovic, G.B., Pavlovic, D., Kocic, G. and Millic, A.D. (2002) Competitive inhibitors of enzymes and their therapeutic application. Facta universitatis Series: Medicine and Biology 9, 201-206
  5. Watababe, A., Kurokawa, Y., Yoshimura, T., Kurihara, T., Soda, K. and Esakii, N. (1999) Role of Lysine 39 of Alanine Racemase from Bacillus stearothermophilus that binds Pyridoxal 5'-Phosphate: chemical rescue studies of Lys39: Ala mutant. J. Biol. Chem. 274, 4189-4194 https://doi.org/10.1074/jbc.274.7.4189
  6. Huang, C.M., Elmets, C.A., Tang, D.C., Li, F. and Yusuf, N. (2004) Proteomics reveals that proteins expressed during the early stage of Bacillus anthracis infection are potential targets for the development of vaccines and drugs. Gen. Prot. Bioinfo. 2, 143-151 https://doi.org/10.1016/S1672-0229(04)02020-0
  7. Delvecchio, V.G., Connolly, J.P., Alefantis, T.G., Walz, A., Quan, M.A., Patra, G., Ashton, J.M., Whittington, J.T., Chafin, R.D., Liang, X., Grewal, P., Khan, A.S. and Mujer, C.V. (2006) Proteomic profiling and identification of immunodominant spore antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. App. Environ. Microbiol. 72, 6355-6363 https://doi.org/10.1128/AEM.00455-06
  8. Steichen, C., Kearney, J.F. and Turnbough, C.L. (2007) Non-uniform assembly of the Bacillus anthracis exosporium and a bottle cap model for spore germination and outgrowth. Mol. Microbiol. 64, 359-367 https://doi.org/10.1111/j.1365-2958.2007.05658.x
  9. Shibata, K., Shirasuna, K., Motegi, K., Kera, Y., Abe, H. and Yamada, R. (2000) Purification and properties of alanine racemase from crayfish Procambarus clarkii. Comp. Biochem. Physiol. Part B 126, 599-608 https://doi.org/10.1016/S0305-0491(00)00228-5
  10. Tanizawa, K., Ohshima, A., Scheidegger, A., Inagaki, K., Tanaka, H. and Soda, K. (1988) Thermostable alanine racemase from Bacillus stearothermophilus: DNA and protein sequence determination and secondary structure prediction. Biochem. 27, 1311-1316 https://doi.org/10.1021/bi00404a033
  11. Yokoigawa, K., Kawai, H., Endo, K., Lim, Y.H., Esaki, N. and Soda, K. (1993) Thermolabile alanine racemase from a psychotroph, Pseudomonas fluorescens: purification and properties. Biosci. Biotechnol. Biochem. 57, 93-97 https://doi.org/10.1271/bbb.57.93
  12. Okubo, Y., Yokoigawa, K., Esaki, N., Soda, K. and Kawai, H. (1999) Characterization of psychrophilic alanine racemase from Bacillus psychrosaccharolyticus. Biochem. Biophys. Res. Com. 256, 333-340 https://doi.org/10.1006/bbrc.1999.0324
  13. Yokoigawa, K., Hirasawa, R., Ueno, H., Okubo, Y., Umesako, S. and Soda, K. (2001) Gene cloning and characterization of alanine racemases from Shigella dysenteriae, Shigella boydii, Shigella flexneri, and Shigella sonnei. Biochem. Biophys. Res. Comm. 288, 676-684 https://doi.org/10.1006/bbrc.2001.5817
  14. Yamashita, T., Ashiuchi, M., Ohnishi, K., Kato, S., Nagata, S. and Misono, H. (2003) Molecular characterization of alanine racemase from Bifidobacterium bifidum. J. Mol. Cat. B: Enzymatic 23(2-6), 213-222 https://doi.org/10.1016/S1381-1177(03)00083-3
  15. Esaki, N. and Walsh, C.T. (1986) Biosynthetic alanine racemase of Salmonella typhimurium: purification and characterization of the enzyme encoded by the alr gene. Biochem. 25, 3261-3267 https://doi.org/10.1021/bi00359a027
  16. Seow, T.K., Inagaki, K., Tamura, T., Soda, K. and Tanaka, H. (1998) Alanine Racemase from an acidophile, Acidiphilium organovorum; Purification and characterization. Biosci. Biotechnol. Biochem. 62, 242-247 https://doi.org/10.1271/bbb.62.242
  17. Francois, J. A. and Kappock, T. J. (2007) Alanine racemase from the acidophile Acetobacter aceti. Prot. Exp. Purif. 51, 39-48 https://doi.org/10.1016/j.pep.2006.05.016
  18. Ju, J., Yokoigawa, K., Misono, H. and Ohnishi, K. (2005) Cloning of alanine racemase genes from Pseudomonas fluorescens strains and oligomerization states of gene products expressed in Escherichia coli. J. Biosci. Bioeng. 100, 409-417 https://doi.org/10.1263/jbb.100.409
  19. Yoshikawa, N., Dhomae, N., Takio, K., Abe, H. (2002) Purification, properties, and partial amino acid sequences of alanine racemase from the muscle of the black tiger prawn Penaeus monodon. Comp. Biochem. Physiol. Part B 133(3), 445-453 https://doi.org/10.1016/S1096-4959(02)00187-2
  20. Riemenschneider, A., Wegele, R., Schmidt, A. and Papenbrock, J. (2005) Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana. Fed. Eur. Biochem. Soc. J. 272, 1291-1304 https://doi.org/10.1111/j.1742-4658.2005.04567.x
  21. Morollo, A.A., Petsko, G.A. and Ringe, D. (1999) Structure of a michaelis complex analogue: propionate binds in the substrate carboxylate site of alanine racemase. Biochem. 38, 3293-3301 https://doi.org/10.1021/bi9822729
  22. Bowden, A.C. (1974) A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem. J. 137, 143-144 https://doi.org/10.1042/bj1370143
  23. Shaw, J.P, Petsko, G.A. and Ringe, D. (1997) Determination of the Structure of Alanine Racemase from Bacillus stearothermophilus at 1.9-A Resolution. Biochem. 36, 1329-1342 https://doi.org/10.1021/bi961856c
  24. Noda, M., Matoba, Y., Kumagai, T. and Sugiyama, M. (2005) A novel assay method for an amino acid racemase reaction based on circular dichroism. Biochem. J. 389, 491-496 https://doi.org/10.1042/BJ20041649
  25. Xu, Q., Zhang, P., Hu, C., Liu, X., Qi, Y. and Liu, Y. (2006) Identification of Amino Acid Residues Involved in the Interaction between Measles Virus Haemagglutin and Its Human Cell Receptor. J. Biochem. Mol. Biol. 39, 406-411 https://doi.org/10.5483/BMBRep.2006.39.4.406

Cited by

  1. Involvement of alanine racemase in germination of Bacillus cereus spores lacking an intact exosporium vol.196, pp.2, 2014, https://doi.org/10.1007/s00203-013-0946-y
  2. Characterization of Lactobacillus salivarius alanine racemase: short-chain carboxylate-activation and the role of A131 vol.4, pp.1, 2015, https://doi.org/10.1186/s40064-015-1335-6
  3. Structural and biochemical analyses of alanine racemase from the multidrug-resistantClostridium difficilestrain 630 vol.70, pp.7, 2014, https://doi.org/10.1107/S1399004714009419
  4. Biochemical characterization of a novel lysine racemase from Proteus mirabilis BCRC10725 vol.46, pp.10, 2011, https://doi.org/10.1016/j.procbio.2011.06.019
  5. Spores to Sterility via Gamma Irradiation vol.84, pp.12, 2018, https://doi.org/10.1128/AEM.00106-18