Research on the Mechanical Strength of Fiber Bragg Grating Sensor Adapting to Railway Structure

철도 구조물 적용을 위한 FBG 센서의 기계적 강도에 관한 연구

  • 윤혁진 (한국철도기술연구원, 철도구조연구실) ;
  • 김정석 (한국철도기술연구원, 철도구조연구실)
  • Published : 2009.02.28

Abstract

In order to apply FBG(Fiber Bragg Grating) sensor as one of reliable sensors in the commercial railway structure, the reliability of FBG sensor in the mechanical strength viewpoint have to be confirmed and the maximum strain should surpass the fracture strain of the host structure to measure the measurands until the host structures fail. In this paper, several factors that influence the mechanical failure strength of fiber Bragg grating sensors were analyzed. A set-up for dynamic tensile testing of optical glass fibers with fiber Bragg gratings was made. To increase the FBG failure strength, techniques relying on the H2 loading treatment and stripping methods were established and testified as a result of the tensile strength test of optical fibers.

광섬유 센서 중 대표적인 FBG센서를 철도 구조물에 실제 적용하기 위해서는, 센서 자체의 기계적 강도에 대한 내구성이 확증되어야 하고, 철도 구조물의 파손 시까지 FBG 센서가 측정치를 측정할 수 있도록 충분한 변형률 한도를 가져야만 한다. 본 논문에서는 FBG센서의 기계적 강도에 영향을 미치는 변수들에 대한 연구를 수행하였다. 기계적 인장 강도 시험을 위한 시험 셋업을 구성하였고, 광섬유의 광민감성을 증진하기 위해 사용된 수소함침법과 코팅층을 제거하기 위한 피복 제거기법을 사용한 FBG 센서의 인장 강도 변화를 시험 및 통계 처리를 이용하여 측정하였고, 강도저하가 거의 없음을 보여 주었다.

Keywords

References

  1. Udd, E.(1995). Fiber Optic Smart Structures, John Wiley and Sones
  2. Heckman, D. W. (2000). "Interferometiric fiber optic gyro technology (IFOG)," IEEE AES systems Magazine, 15, pp.23-28
  3. 정원석, 김성일, 김남식, 이희업 (2006). "Long-gauge 광섬유 센서를 이용한 철도교 PSC 거더의 처짐유추," 한국철도학회논문집, pp. 467-472
  4. IEC 60793-1-3: Optical fibers, Part I: Generic specifications, Section 3 : Measuring methods for mechanical characteristics, First edition, 1995
  5. Varelas, D., Limberger, H. G., Salathe, R. P. and Kotrotsios, C. (1997). "UV-induced mechanical degradation of optical fibres," Electronics Letters, 33, pp.804-806 https://doi.org/10.1049/el:19970512
  6. Olshansky, R. and Maurer, D. R. (1976). "Tensile strength and fatigue of optical fibers, " Journal of Applied Physics, 47, pp.4497 https://doi.org/10.1063/1.322419
  7. Weibull, W. A. (1939). "The phenomenon of rupture in solids," Ingvetensk Akad, Handl, 153
  8. Atkins R. M., Lemaire P.J., Erdogan T and Mizrahi V. (1993). "Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses, " Electronics Letters, 29, pp.1234-1235 https://doi.org/10.1049/el:19930825
  9. Stone, J. (1987). "Interactions of hydrogen and deuterium with sillica optical fibers: A review," IEEE Journal of Lightwave Technology, 5, pp.712 https://doi.org/10.1109/JLT.1987.1075562
  10. Yoon, H. J. and Kim C. G. (2007). "The mechanical strength of fiber Bragg gratings under the controlled UV laser conditions," Smart Materials and Structures, 16, pp.1315-1319 https://doi.org/10.1088/0964-1726/16/4/045
  11. Matthewson, M. J., Kurkjian, C. R. and Hamblin J. R. (1997). "Acid stripping of fused silica optical fibers without strength degradation," Journal of Lightwave Technology, 15, pp.490-497 https://doi.org/10.1109/50.557565