Abstract
Stream service environment demands real-time query processing for voluminous data which are ceaselessly delivered from tremendous sources. Typical R-tree based query processing technologies cannot efficiently handle such situations, which require repetitive and inefficient exploration from the tree root on every data event. However, many stream data including sensor readings show high locality, which we exploit to reduce the search space of queries to explore. In this paper, we propose a query processing scheme exploiting the locality of stream data. From the simulation, we conclude that the proposed scheme performs much better than the traditional ones in terms of scalability and exploration efficiency.
스트림 서비스 환경에서는 지속적으로 입력되는 막대한 양의 데이터에 대해 원하는 조건을 탐색하는 실시간 질의처리가 요구된다. 기존의 R-tee기반 질의처리 기술은 각 이벤트에 대해 트리 전체에 대해 동일한 탐색과정을 반복해야 하므로 이를 효율적으로 감당할 수 없었다. 한편 센서 측정값을 비롯한 대부분의 스트림 데이터는 매우 높은 지역성을 가지며 이를 활용하여 탐색 공간을 크게 줄일 수 있다. 따라서 본 연구에서는 스트림 데이터의 지역성을 활용하여 스트림 환경에 적합한 질의처리 기법을 제안하였다. 또한 이 프레임웍을 활용하여 스트림 환경에서 어플리케이션이 요구하는 다양한 질의처리 서비스를 개발할 수 있을 것으로 기대된다. 본 연구에서 구현한 프로토타입 시스템을 스트림 환경에 적용해 얻은 실험 결과를 통해, 스트림 환경에서 기존질의처리 기법보다 더 적합하고 효율이 크게 개선됨을 확인할 수 있었다.