DOI QR코드

DOI QR Code

Rapamycin-Induced Abundance Changes in the Proteome of Budding Yeast

  • Shin, Chun-Shik (School of Biological Sciences, and Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University) ;
  • Chang, Yeon-Ji (School of Biological Sciences, and Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University) ;
  • Lee, Hun-Goo (Department of Molecular Biology and Biochemistry, Rutgers University) ;
  • Huh, Won-Ki (School of Biological Sciences, and Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University)
  • Published : 2009.12.31

Abstract

The target of rapamycin (TOR) signaling pathway conserved from yeast to human plays critical roles in regulation of eukaryotic cell growth. It has been shown that TOR pathway is involved in several cellular processes, including ribosome biogenesis, nutrient response, autophagy and aging. However, due to the functional diversity of TOR pathway, we do not know yet some key effectors of the pathway. To find unknown effectors of TOR signaling pathway, we took advantage of a green fluorescent protein (GFP)-tagged collection of budding yeast Saccharomyces cerevisiae. We analyzed protein abundance changes by measuring the GFP fluorescence intensity of 4156 GFP-tagged yeast strains under inhibition of TOR pathway. Our proteomic analysis argues that 83 proteins are decreased whereas 32 proteins are increased by treatment of rapamycin, a specific inhibitor of TOR complex 1 (TORC1). We found that, among the 115 proteins that show significant changes in protein abundance under rapamycin treatment, 37 proteins also show expression changes in the mRNA levels by more than 2-fold under the same condition. We suggest that the 115 proteins indentified in this study may be directly or indirectly involved in TOR signaling and can serve as candidates for further investigation of the effectors of TOR pathway.

Keywords

References

  1. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., and Sherlock, G. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25-29 https://doi.org/10.1038/75556
  2. Belle, A., Tanay, A., Bitincka, L., Shamir, R., and O'Shea, E.K. (2006). Quantification of protein half-lives in the budding yeast proteome. Proc. Natl. Acad. Sci. USA 103, 13004-13009 https://doi.org/10.1073/pnas.0605420103
  3. Binda, M., Peli-Gulli, M.P., Bonfils, G., Panchaud, N., Urban, J., Sturgill, T.W., Loewith, R., and De Virgilio, C. (2009). The Vam6 GEF controls TORC1 by activating the EGO complex. Mol. Cell 35, 563-573 https://doi.org/10.1016/j.molcel.2009.06.033
  4. Cherkasova, V.A., and Hinnebusch, A.G. (2003). Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2. Genes Dev . 17, 859-872 https://doi.org/10.1101/gad.1069003
  5. Crick, F.H. (1958). On protein synthesis. Symp. Soc. Exp. Biol. 12, 138-163
  6. Hardwick, J.S., Kuruvilla, F.G., Tong, J.K., Shamji, A.F., and Schreiber, S.L. (1999). Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc. Natl. Acad. Sci. USA 96, 14866-14870 https://doi.org/10.1073/pnas.96.26.14866
  7. Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., and O'Shea, E.K. (2003). Global analysis of protein localization in budding yeast. Nature 425, 686-691 https://doi.org/10.1038/nature02026
  8. Jackson, R.C., Weber, G., and Morris, H.P. (1975). IMP dehydrogenase, an enzyme linked with proliferation and malignancy. Nature 256, 331-333 https://doi.org/10.1038/256331a0
  9. Jia, K., Chen, D., and Riddle, D.L. (2004). The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131, 3897-3906 https://doi.org/10.1242/dev.01255
  10. Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T.P., and Guan, K.L. (2008). Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell. Biol. 10, 935-945 https://doi.org/10.1038/ncb1753
  11. Lee, M.W., Kim, B.J., Choi, H.K., Ryu, M.J., Kim, S.B., Kang, K.M., Cho, E.J., Youn, H.D., Huh, W.K., and Kim, S.T. (2007). Global protein expression profiling of budding yeast in response to DNA damage. Yeast 24, 145-154 https://doi.org/10.1002/yea.1446
  12. Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J.L., Bonenfant, D., Oppliger, W., Jenoe, P., and Hall, M.N. (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell. 10, 457-468 https://doi.org/10.1016/S1097-2765(02)00636-6
  13. Mayer, C., and Grummt, I. (2006). Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25, 6384-6391 https://doi.org/10.1038/sj.onc.1209883
  14. McCarthy, J.E. (1998). Posttranscriptional control of gene expression in yeast. Microbiol. Mol. Biol. Rev. 62, 1492-1553
  15. Newman, J.R., Ghaemmaghami, S., Ihmels, J., Breslow, D.K., Noble, M., DeRisi, J.L., and Weissman, J.S. (2006). Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840-846 https://doi.org/10.1038/nature04785
  16. Powers, R.W. 3rd, Kaeberlein, M., Caldwell, S.D., Kennedy, B.K., and Fields, S. (2006). Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev . 20, 174-184 https://doi.org/10.1101/gad.1381406
  17. Powers, T., and Walter, P. (1999). Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol. Biol. Cell. 10, 987-1000 https://doi.org/10.1091/mbc.10.4.987
  18. Rohde, J., Heitman, J., and Cardenas, M.E. (2001). The TOR kinases link nutrient sensing to cell growth. J. Biol. Chem. 276, 9583-9586 https://doi.org/10.1074/jbc.R000034200
  19. Sancak, Y., Peterson, T.R., Shaul, Y.D., Lindquist, R.A., Thoreen, C.C., Bar-Peled, L., and Sabatini, D.M. (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496-1501 https://doi.org/10.1126/science.1157535
  20. Sherman, F. (2002). Getting started with yeast. Methods Enzymol . 350, 3-41 https://doi.org/10.1016/S0076-6879(02)50954-X
  21. Song, Y.B., Jhun, M.A., Park, T., and Huh, W.K. (2009). Quantitative proteomic analysis of ribosomal protein L35b mutant of Saccharomyces cerevisiae. Biochim Biophys Acta https://doi.org/10.1016/j.bbapap.2009.10.014
  22. Varshavsky, A. (1996). The N-end rule: functions, mysteries, uses. Proc. Natl. Acad. Sci. USA 93, 12142-12149 https://doi.org/10.1073/pnas.93.22.12142
  23. Wullschleger, S., Loewith, R., and Hall, M.N. (2006). TOR signaling in growth and metabolism. Cell 124, 471-484 https://doi.org/10.1016/j.cell.2006.01.016
  24. Xie, M.W., Jin, F., Hwang, H., Hwang, S., Anand, V., Duncan, M.C., and Huang, J. (2005). Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method. Proc. Natl. Acad. Sci. USA 102, 7215-7220 https://doi.org/10.1073/pnas.0500297102
  25. Zid, B.M., Rogers, A.N., Katewa, S.D., Vargas, M.A., Kolipinski, M.C., Lu, T.A., Benzer, S., and Kapahi, P. (2009). 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139, 149-160 https://doi.org/10.1016/j.cell.2009.07.034