비대칭 라플라스 분포를 이용한 분위수 회귀

Quantile regression using asymmetric Laplace distribution

  • 발행 : 2009.11.30

초록

분위수 회귀모형은 확률변수들 사이에 확률적인 관계구조를 포함한 함수 모형을 좀 더 완벽하게 추정하도록 제공한다. 본 논문에서는 함수 추정에 로버스트하다고 알려져 있는 서포트벡터기계 기법과 이중벌칙커널기계를 이용하여 분위수 회귀모형을 추정하고자 한다. 이중벌칙커널기계는 고차원의 입력변수에 대한 분위수 회귀가 요구될 때 분위수 회귀모형을 잘 추정한다고 알려져 있다. 또한 본 논문에서는 광범위한 형태의 분위수 회귀모형 추정을 위해서 정규분포보다 비대칭 라플라스 분포를 이용한다. 본 논문에서 제안한 모형은 분위수 회귀모형 추정을 위해서 서포트벡터기계 기법에 이중벌칙커널기계를 이용하여 각각의 평균과 분산을 동시에 추정한다. 평균과 분산함수 추정을 위해 사용된 커널함수의 모수들은 최적의 값을 찾기 위해 일반화근사 교차타당성을 이용한다.

Quantile regression has become a more widely used technique to describe the distribution of a response variable given a set of explanatory variables. This paper proposes a novel modelfor quantile regression using doubly penalized kernel machine with support vector machine iteratively reweighted least squares (SVM-IRWLS). To make inference about the shape of a population distribution, the widely popularregression, would be inadequate, if the distribution is not approximately Gaussian. We present a likelihood-based approach to the estimation of the regression quantiles that uses the asymmetric Laplace density.

키워드

참고문헌

  1. Basset, G. and Koenker, R. (1982). An empirical quantile function for linear models with iid errors. Journal of the American Statistical Association, 77, 407-415. https://doi.org/10.2307/2287261
  2. He, X. (1997). Quantile curves without crossing. The American Statistician, 51, 186-192. https://doi.org/10.2307/2685417
  3. Heagerty, P. J. and Pepe, M. S. (1999). Semiparametric estimation of regression quantiles with application to standardizing weight for height and age in US children. Applied Statistics, 48, 533-551.
  4. Hwang, C. and Shim, J. (2005). A simple quantile regression via support vector machine. Lecture Notes in Computer Science, 3610, 512-520.
  5. Kimeldorf, G. S. and Wahba, G. (1971). Some results on Tchebycheffian spline functions. Journal of Mathematical Analysis and its Applications, 33, 82-95. https://doi.org/10.1016/0022-247X(71)90184-3
  6. Koenker, R. (2005). Quantile regression, Cambridge University Press, London.
  7. Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33-50. https://doi.org/10.2307/1913643
  8. Mercer, J. (1909). Functions of positive and negative and their connection with the theory of integral equations. Philosphical Transactions of the Royal Society, A, 415-446.
  9. Powell, J. L. (1986). Censored regression quantiles. Journal of Econometrics, 32, 143-155. https://doi.org/10.1016/0304-4076(86)90016-3
  10. Shim, J., Hwang, C. and Seok, K. (2009). Non-crossing quantile regression via doubly penalized kernel machine. Computational Statistics, 24, 83-94. https://doi.org/10.1007/s00180-008-0123-y
  11. Shim, J., Park, H. and Hwang, C. (2009). A kernel machine for estimation of mean and volatility functions. Journal of the Korean Data & Information Science Society, 20, 905-912.
  12. Shim, J., Park, H. and Seok, K. (2009). Variance function estimation with LS-SVM for replicated data. Journal of the Korean Data & Information Science Society, 20, 925-931.
  13. Smola, A. J. and Scholkopf, B. (1998). A tutorial on support vector regression. NeuroCOLT2 Technical Report, NeuroCOLT.
  14. Sohn, I., Kim, S., Hwang, C., Lee, J. W. and Shim, J. (2008). Support vector machine quantile regression for detecting differentially expressed genes in microarray analysis. Methods of Information in Medicine, 47, 459-467.
  15. Vapnik, V. N. (1998). Statistical learning theory, Springer.
  16. Weiss, A. (1991). Estimating nonlinear dynamic models using least absolute error estimation. Econometric Theory, 7, 46-68. https://doi.org/10.1017/S0266466600004230
  17. White, H. (1992). Nonparametric estimation of conditional quantile using neural networks, in H. White, eds., Artificial Neural Networks: Approximation and Learning Theory, Blackwell, Oxford, 191-205.
  18. Xiang, D. and Wahba, G. (1996). A generalized approximate cross validation for smoothing splines with non-Gaussian data. Statistica Sinica, 6, 675-692.
  19. Yuan, M. and Wahba, G. (2004). Doubly penalized likelihood estimator in heteroscedastic regression. Statistics and Probability Letter , 69, 11-20.