DOI QR코드

DOI QR Code

Development of Distributed Rainfall-Runoff Model Using Multi-Directional Flow Allocation and Real-Time Updating Algorithm (I) - Theory -

다방향 흐름 분배와 실시간 보정 알고리듬을 이용한 분포형 강우-유출 모형 개발(I) - 이론 -

  • Kim, Keuk-Soo (River, Coastal and Harbor Research Division, Korea Institute of Construction Technology) ;
  • Han, Kun-Yeun (Dept. of Civil Engrg., Kyungpook National Univ.) ;
  • Kim, Gwang-Seob (Dept. of Civil Engrg., Kyungpook National Univ.)
  • 김극수 (한국건설기술연구원 하천해안항만연구실) ;
  • 한건연 (경북대학교 공과대학 토목공학과) ;
  • 김광섭 (경북대학교 공과대학 토목공학과)
  • Published : 2009.03.31

Abstract

In this study, a distributed rainfall-runoff model is developed using a multi-directional flow allocation algorithm and the real-time runoff updating algorithm. The developed model consists of relatively simple governing equations of hydrologic processes in order to apply developed algorithms and to enhance the efficiency of computational time which is drawback of distributed model application. The variability of topographic characteristics and flow direction according to various spatial resolution were analyzed using DEM(Digital Elevation Model) data. As a preliminary process using fine resolution DEM data, a multi-directional flow allocation algorithm was developed to maintain detail flow information in distributed rainfall-runoff simulation which has strong advantage in computation efficiency and accuracy. Also, a real-time updating algorithm was developed to update current watershed condition. The developed model is able to hold the information of actual behavior of runoff process in low resolution simulation. Therefore it is expected the improvement of forecasting accuracy and computational efficiency.

본 연구에서는 다방향 흐름 분배 알고리듬과 실시간 보정 알고리듬을 개발하여 분포형 강우-유출 모형에 적용하였다. 개발된 알고리듬의 적용과 분포형 모형 적용상의 약점인 계산시간 개선을 위해 비교적 간단한 수문과정 지배 방정식들을 이용하여 분포형 강우-유출 모형을 작성하였다. DEM(Digital Elevation Model)를 이용하여 공간해상도 변화에 따른 지형정보와 흐름정보의 변동성을 파악하였다. 모의수행 전처리 과정으로 가용한 고해상도 DEM 자료를 사용하여 공간해상도 변화에 따른 흐름정보의 손실을 최소화하고 상세흐름정보를 저해상도 흐름정보에 반영시키는 다방향 흐름분배 알고리듬을 개발하였다. 또한 실시간으로 유역상태량을 보정하는 실시간 보정 알고리듬을 개발하다. 개발된 모형은 저해상도 모의에서 유출 과정의 실제적 거동 정보를 유지할 수 있다. 그러므로 예측 정확도 향상 및 계산시간의 개선이 기대된다.

Keywords

References

  1. 건설교통부 (2006). 한국수문조사연보
  2. 김성준 (1998). '격자기반의 운동파 강우유출모형 개발(I)-이론 및 모형-.'한국수자원학회논문집, 제31권, 제3호, pp. 303-308
  3. 신철균, 조효섭, 정관수, 김재한 (2004). '저류함수기법을 이용한 격자기반의 강우-유출 모형의 개발.' 한국수자원학회논문집, 제37권, 제11호, pp. 969-978 https://doi.org/10.3741/JKWRA.2004.37.11.969
  4. 최윤석, 김경탁, 이진희 (2008). '유한체적법을 이용한 격자기반의 분포형 강우-유출 모형 개발.' 한국수자원학회논문집, 제41권, 제9호, pp. 895-905 https://doi.org/10.3741/JKWRA.2008.41.9.895
  5. 최현상, 한건연 (2004). 'GIS와 불확실도 해석기법을 이용한 분포형 강우-유출 모형의 개발 (I)-이론 및 모형의 개발-.' 한국수자원학회논문집, 제37권, 제4호, pp. 329-339 https://doi.org/10.3741/JKWRA.2004.37.4.329
  6. Beven, K. (1989). 'Changing ideas in hydrology-the case of physically based models.' Journal of Hydrology, Vol. 105, pp. 157-172 https://doi.org/10.1016/0022-1694(89)90101-7
  7. Chow, V.T., Maidment, D.R., and Mays, L.W. (1988). Applied Hydrology. McGraw-Hil
  8. Costa-Cabral, M.C. and Burges, S.J. (1994). 'Digital elevation model networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas.' Water Resources Research, Vol. 30, pp. 1681-1692 https://doi.org/10.1029/93WR03512
  9. Desmet, P. and Govers, G. (1996). 'Comparison of routing algorithms for Digital Elevation Models and their implications for predicting ephemeral gullies.' Journal of Soil and Water Conservation, Vol. 51, pp. 427-433
  10. Downer, C.W. and Ogden, F.L. (2002). GSSHA ser's Manual, Gridded Surface-Subsurface Hydrologic Analysis, Version 1.43 for WMS 6.1, EDRL Technical Report, Engineering Research and Development Center, U.S. Army Corps of Engineers, Vicksburg
  11. Fairfield, J. and Leymarie, P. (1991). 'Drainage networks from grid Digital Elevation Models.' Water Resources Research, Vol. 27, pp. 709-717 https://doi.org/10.1029/90WR02658
  12. Green, W.H. and Ampt, G.A. (1911). 'Studies on soil physics, part I, the flow of air and water through soils.' J. Agric. Sci., Vol. 4, No. 1, pp. 1-24 https://doi.org/10.1017/S0021859600001441
  13. Gupta, V.K., Rodriguez-Iturbe, I., and Wood, E.F. (1986). Scale problems in hydrology, Springer
  14. Hino, M. (1970). 'Runoff forecast by linear predictive filter.' Journal of Hydraulic Division, Vol. 96, pp. 618-707
  15. Holmgren, P. (1994). 'Multiple flow direction algorithms for runoff modeling in grid based elevation models: An empirical evaluation.' Hydrological Processes, Vol. 8, pp. 327-334 https://doi.org/10.1002/hyp.3360080405
  16. Jenson, S.K. and Domingue, J.O. (1988). 'Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis.' Photogrammetric Engineering and Remote Sensing, Vol. 54, No. 11, pp. 1593-1600
  17. Julien, P.Y. and Saghafian, B. (1991). CASC2D User's Manual, a two-dimensional watershed rainfall-runoff model. Center for Geosciences-Hydrologic Modeling Group, Colorado State University(CER90-91PYJ-BS-12)
  18. Kalma, J.D. and Sivapalan, M. (1995). Scale issues in hydrological modelling, Wiley, New York, NY
  19. Kim, S.M., Tachikawa, Y., and Takara, K. (2007). 'Applying a recursive update algorithm to a distributed hydrologic model.' Journal of Hydrologic Engineering, ASCE, Vol. 12, pp. 336-344 https://doi.org/10.1061/(ASCE)1084-0699(2007)12:3(336)
  20. Krzysztofowicz, R. (2001). 'The case of probabilistic forecasting in hydrology.' Journal of Hydrology, Vol. 249, pp. 2-9 https://doi.org/10.1016/S0022-1694(01)00420-6
  21. Lee, Y.H. and Singh, V.P. (1999). 'Tank model using Kalman filter.' Journal of Hydrologic Engineering, Vol. 4, pp. 344-349 https://doi.org/10.1061/(ASCE)1084-0699(1999)4:4(344)
  22. Nash, J.E. and Sutcliffe, J.V. (1970). 'River flow forecasting through conceptual models. Part 1-A discussion of principles.' Journal of Hydrology, Vol. 10, pp. 282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  23. O'Callaghan, J.F. and Mark D.M. (1984). 'The extraction of drainage networks from digital elevation data.' Computer Vision, Graphics and Image Processing, Vol. 28, pp. 328-344
  24. Puente, C.E. and Bras, R.L. (1987). 'Application of nonlinear filtering in the real time forecasting of river flows.' Water Resources Research, Vol. 23, pp. 675-682 https://doi.org/10.1029/WR023i004p00675
  25. Quinn, P.F., Beven, K.J., Chevallier, P., and Planchon, O. (1991). 'The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models.' Hydrological Processes, Vol. 5, pp. 59-79 https://doi.org/10.1002/hyp.3360050106
  26. Rabuffetti, D. (2006). 'Discharge assimilation in a distributed flood forecasting model.' Advances in Geosciences, Vol. 7, pp. 355-360 https://doi.org/10.5194/adgeo-7-355-2006
  27. Rajaram, H. and Georgakakos, K.P. (1989). 'Recursive parameter estimation of hydrologic models.' Water Resources Research, Vol. 25, pp. 281-294 https://doi.org/10.1029/WR025i002p00281
  28. Rojas, R. (2002). GIS-based upland erosion modeling, geovisualization and grid size effects on erosion simulations with CASC2D-SED. PhD thesis, Department of Civil Engineering, Colorado State University, Fort Collins, Colorado
  29. Smith, M.B., Georgakakos, K.P., and Liang, X. (2004). 'Preface, The distributed model intercomparision project (DMIP).' Journal of Hydrology. Vol. 298, pp. 1-3 https://doi.org/10.1016/j.jhydrol.2004.05.001
  30. Tachikawa, Y., Nagatani, G., and Takara, K. (2004). 'Development of stage-discharge relationship equation incorporating saturated-unsaturated flow mechanism.' Annual J. Hydraulic Engineering, JSCE, 48, pp. 4-12(in Japanese with English abstract)
  31. Tarboton, D.G. (1997). 'A new method for the determination of flow directions and upslope areas in grid Digital Elevation Models.' Water Resources Research, Vol. 33, pp. 309-319 https://doi.org/10.1029/96WR03137
  32. Todini, E. and Wallis, J.R. (1978). 'A real time rainfall run-off model for an on-line flood warning system.' in Application of Kalman filter to hydrology, hydraulics and water resources, edited by Chaolin, C., pp. 355-368
  33. Vieux, B.E. and Vieux, J.E. (2002). 'VfloTM: a real-time distributed hydrologic model.' Proceedings of 2nd Federal Interagency Hydrologic Modeling Conference(Parer on CD-ROM)
  34. WMO (2004). Associated Program on Flood Management
  35. Wood, E.F. and Szollosi-Nagy, A. (1978). 'An adaptive algorithm for analyzing short-term structural and parameter changes in hydrologic prediction models.' Water Resources Research, Vol. 14, pp. 577-581 https://doi.org/10.1029/WR014i004p00577

Cited by

  1. Parameter Estimation of a Distributed Hydrologic Model using Parallel PEST: Comparison of Impacts by Radar and Ground Rainfall Estimates vol.46, pp.11, 2013, https://doi.org/10.3741/JKWRA.2013.46.11.1041
  2. Development of Continuous Rainfall-Runoff Model for Flood Forecasting on the Large-Scale Basin vol.44, pp.1, 2011, https://doi.org/10.3741/JKWRA.2011.44.1.51