DOI QR코드

DOI QR Code

Regulatory patterns of histone modifications to control the DNA methylation status at CpG islands

  • Published : 2009.03.31

Abstract

Introduction: Histone modifications and DNA methylation are the major factors in epigenetic gene regulation. Especially, revealing how histone modifications are related to DNA methylation is one of the challenging problems in this field. In this paper, we address this issue and propose several plausible mechanisms for precise controlling of DNA methylation status at CpG islands. Materials and Methods: To establish the regulatory relationships, we used 38 histone modification types including H2A.Z and CTCF, and DNA methylation status at CpG islands across chromosome 6, 20, and 22 of human CD4+ T cell. We utilized Bayesian network to construct regulatory network. Results and Discussion: We found several meaningful relationships supported by previous studies. In addition, our results show that histone modifications can be clustered into several groups with different regulatory properties. Based on those findings we predicted the status of methylation level at CpG islands with high accuracy, and suggested core-regulatory network to control DNA methylation status.

Keywords

References

  1. Adorjan, P., Distler, J., Lipscher, E., Model, F., Muller, J., Pelet, C., Braun, A., Florl, A. R., Gutig, D., Grabs, G., et al. (2002). Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res. 30, e21 https://doi.org/10.1093/nar/30.5.e21
  2. Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., Wei, G., Chepelev, I., and Zhao, K. (2007). High-resolution profiling of histone methylations in the human genome. Cell 129, 823-837 https://doi.org/10.1016/j.cell.2007.05.009
  3. Bernstein, B. E., Humphrey, E. L., Erlich, R. L., Schneider, R., Bouman, P., Liu, J. S., Kouzarides, T., and Schreiber, S. L. (2002). Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl. Acad. Sci. USA 99, 8695-8700 https://doi.org/10.1073/pnas.082249499
  4. Bernstein, B. E., Kamal, M., Lindblad-Toh, K., Bekiranov, S., Bailey, D. K., Huebert, D. J., McMahon, S., Karlsson, E. K., Kulbokas, E. J., 3rd, Gingeras, T. R., et al. (2005). Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169-181 https://doi.org/10.1016/j.cell.2005.01.001
  5. Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315-326 https://doi.org/10.1016/j.cell.2006.02.041
  6. Bock, C., Paulsen, M., Tierling, S., Mikeska, T., Lengauer, T., and Walter, J. (2006). CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genet. 2, e26 https://doi.org/10.1371/journal.pgen.0020026
  7. Boyer, L. A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L. A., Lee, T. I., Levine, S. S., Wernig, M., Tajonar, A., Ray, M. K., et al. (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349-353 https://doi.org/10.1038/nature04733
  8. Das, R., Dimitrova, N., Xuan, Z., Rollins, R. A., Haghighi, F., Edwards, J. R., Ju, J., Bestor, T. H., and Zhang, M. Q. (2006). Computational prediction of methylation status in human genomic sequences. Proc. Natl. Acad. Sci. USA 103, 10713-10716 https://doi.org/10.1073/pnas.0602949103
  9. Down, T. A., Rakyan, V. K., Turner, D. J., Flicek, P., Li, H., Kulesha, E., Graf, S., Johnson, N., Herrero, J., Tomazou, E. M., et al. (2008). A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat. Biotechnol. 26, 779-785 https://doi.org/10.1038/nbt1414
  10. Eckhardt, F., Lewin, J., Cortese, R., Rakyan, V. K., Attwood, J., Burger, M., Burton, J., Cox, T. V., Davies, R., Down, T. A., et al. (2006). DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet. 38, 1378-1385 https://doi.org/10.1038/ng1909
  11. Fan, S., Zhang, M. Q., and Zhang, X. (2008). Histone methylation marks play important roles in predicting the methylation status of CpG islands. Biochem. Biophys Res. Commun. 374, 559-564 https://doi.org/10.1016/j.bbrc.2008.07.077
  12. Fang, F., Fan, S., Zhang, X., and Zhang, M. Q. (2006). Predicting methylation status of CpG islands in the human brain. Bioinformatics 22, 2204-2209 https://doi.org/10.1093/bioinformatics/btl377
  13. Gilbert, N., Thomson, I., Boyle, S., Allan, J., Ramsahoye, B., and Bickmore, W. A. (2007). DNA methylation affects nuclear organization, histone modifications, and linker histone binding but not chromatin compaction. J. Cell Biol. 177, 401-411 https://doi.org/10.1083/jcb.200607133
  14. Gitan, R. S., Shi, H., Chen, C. M., Yan, P. S., and Huang, T. H. (2002). Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res. 12, 158-164 https://doi.org/10.1101/gr.202801
  15. Gribskov, M., and Robinson, N. L. (1996). Use of receiver operating characteristic (ROC) analysis to evaluate sequence matching. Comput. Chem. 20, 25-33 https://doi.org/10.1016/S0097-8485(96)80004-0
  16. Iwase, S., Lan, F., Bayliss, P., de la Torre-Ubieta, L., Huarte, M., Qi, H. H., Whetstine, J. R., Bonni, A., Roberts, T. M., and Shi, Y. (2007). The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128, 1077-1088 https://doi.org/10.1016/j.cell.2007.02.017
  17. JUNG, S., LEE, K. H., and LEE, D. (2007). Enabling Large-Scale Bayesian Network Learning by Preserving Intercluster Directionality. IEICE Transactions on Information and Systems E90-D(7), 1018-1027 https://doi.org/10.1093/ietisy/e90-d.7.1018
  18. Keshet, I., Schlesinger, Y., Farkash, S., Rand, E., Hecht, M., Segal, E., Pikarski, E., Young, R. A., Niveleau, A., Cedar, H., and Simon, I. (2006). Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat. Genet. 38, 149-153 https://doi.org/10.1038/ng1719
  19. Ladurner, A. G., Inouye, C., Jain, R., and Tjian, R. (2003). Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries. Mol. Cell 11, 365-376 https://doi.org/10.1016/S1097-2765(03)00035-2
  20. Liang, G., Lin, J. C., Wei, V., Yoo, C., Cheng, J. C., Nguyen, C. T., Weisenberger, D. J., Egger, G., Takai, D., Gonzales, F. A., and Jones, P. A. (2004). Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc. Natl. Acad. Sci. USA 101, 7357-7 https://doi.org/10.1073/pnas.0401866101
  21. Lippman, Z., Gendrel, A. V., Black, M., Vaughn, M. W., Dedhia, N., McCombie, W. R., Lavine, K., Mittal, V., May, B., Kasschau, K. D., et al. (2004). Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471-476 https://doi.org/10.1038/nature02651
  22. Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T. K., Koche, R. P., et al. (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553-560 https://doi.org/10.1038/nature06008
  23. Needham, C. J., Bradford, J. R., Bulpitt, A. J., and Westhead, D. R. (2006). Inference in Bayesian networks. Nat. Biotechnol. 24, 51-53 https://doi.org/10.1038/nbt0106-51
  24. Raisner, R. M., Hartley, P. D., Meneghini, M. D., Bao, M. Z., Liu, C. L., Schreiber, S. L., Rando, O. J., and Madhani, H. D. (2005). Histone variant H2A.Z marks the 5' ends of both active and inactive genes in euchromatin. Cell 123, 233-248 https://doi.org/10.1016/j.cell.2005.10.002
  25. Robyr, D., Suka, Y., Xenarios, I., Kurdistani, S. K., Wang, A., Suka, N., and Grunstein, M. (2002). Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109, 437-446 https://doi.org/10.1016/S0092-8674(02)00746-8
  26. Roh, T. Y., Cuddapah, S., Cui, K., and Zhao, K. (2006). The genomic landscape of histone modifications in human T cells. Proc. Natl. Acad. Sci. USA 103, 15782-15787 https://doi.org/10.1073/pnas.0607617103
  27. Roh, T. Y., Cuddapah, S., and Zhao, K. (2005). Active chromatin domains are defined by acetylation islands revealed by genomewide mapping. Genes Dev. 19, 542-552 https://doi.org/10.1101/gad.1272505
  28. Rountree, M. R., Bachman, K. E., and Baylin, S. B. (2000). DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat. Genet. 25, 269-277 https://doi.org/10.1038/77023
  29. Schmid, C. D., and Bucher, P. (2007). ChIP-Seq data reveal nucleosome architecture of human promoters. Cell 131, 831- 832; author reply 832-833 https://doi.org/10.1016/j.cell.2007.11.017
  30. Selker, E. U., Tountas, N. A., Cross, S. H., Margolin, B. S., Murphy, J. G., Bird, A. P., and Freitag, M. (2003). The methylated component of the Neurospora crassa genome. Nature 422, 893-897 https://doi.org/10.1038/nature01564
  31. Tamaru, H., and Selker, E. U. (2001). A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277-283 https://doi.org/10.1038/35104508
  32. Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Peng, W., Zhang, M. Q., and Zhao, K. (2008). Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40, 897-903 https://doi.org/10.1038/ng.154
  33. Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W. L., and Schubeler, D. (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853-862 https://doi.org/10.1038/ng1598
  34. Yu, H., Zhu, S., Zhou, B., Xue, H., and Han, J. D. (2008). Inferring causal relationships among different histone modifications and gene expression. Genome Res. 18, 1314-1324 https://doi.org/10.1101/gr.073080.107
  35. Zilberman, D., Coleman-Derr, D., Ballinger, T., and Henikoff, S. (2008). Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456, 125-129 https://doi.org/10.1038/nature07324

Cited by

  1. Finding Associations among Histone Modifications Using Sparse Partial Correlation Networks vol.9, pp.9, 2013, https://doi.org/10.1371/journal.pcbi.1003168
  2. Discovering Cooperative Relationships of Chromatin Modifications in Human T Cells Based on a Proposed Closeness Measure vol.5, pp.12, 2010, https://doi.org/10.1371/journal.pone.0014219