DOI QR코드

DOI QR Code

Backbone 1H, 15N and 13C Resonance Assignment and Secondary Structure Prediction of HP0062 (O24902_HELPY) from Helicobacter pylori

  • Jang, Sun-Bok (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Ma, Chao (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Park, Sung-Jean (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Kwon, Ae-Ran (Department of Herbal Skin Care, College of Herbal Bio-Industry, Daegu Haany University) ;
  • Lee, Bong-Jin (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University)
  • Published : 2009.12.20

Abstract

HP0062 is an 86 residue hypothetical protein from Helicobacter pylori strain 26695. HP0062 was identified ESAT-6/WXG100 superfamily protein based on structure and sequence alignment and also contains leucine zipper domain sequence. Here, we report the sequence-specific backbone resonance assignment of HP0062. About 97.7% of all $^1H_N,\;^{15}N,\;^{13}C_{\alpha},\;^{13}C_{\beta}\;and\;^{13}C=O$ resonances were assigned unambiguously. We could predict the secondary structure of HP0062 by analyzing the deviation of the $^{13}C_{alpha}\;and\;^{13}C_{\beta}$ chemical shifts from their respective random coil values. Secondary structure prediction shows that HP0062 consist of two ${\alpha}$-helices. This study is a prerequisite for determining the solution structure of HP0062 and can be used for the study on interaction between HP0062 and DNA and other Helicobacter pylori proteins.

Keywords

References

  1. Rothenbacher D., Brenner H., Microbes Infect. 5(8), 693-703 (2003) https://doi.org/10.1016/S1286-4579(03)00111-4
  2. Tomb J. F., White O., Kerlavage A. R., Clayton R. A., Sutton G. G., Fleischmann R. D., Ketchum K. A., Klenk H. P., Gill S., Dougherty B. A., Nelson K., Quackenbush J., Zhou L., Kirkness E. F., Peterson S., Loftus B., Richardson D., Dodson R., Khalak H. G., Glodek A., McKenney K., Fitzegerald L. M., Lee N., Adams M. D., Hickey E. K., Berg D. E., Gocayne J. D., Utterback T. R., Peterson J. D., Kelley J. M., Cotton M. D., Weidman J. M., Fujii C., Bowman C., Watthey L., Wallin E., Hayes W. S., Borodovsky M., Karp P. D., Smith H. O., Fraser C. M., Venter J. C., Nature 388(6642), 539-547 (1997) https://doi.org/10.1038/41483
  3. Suerbaum S., Josenhans C., Nat Rev Microbiol. 5(6), 441-452 (2007) https://doi.org/10.1038/nrmicro1658
  4. Kim W.J., Lim J.S., Son W.S., Ahn H.C., Lee B.J., JKMRS. 12, 65-73 (2008)
  5. Jang S.B., Kwon A.R., Son W.S., Park S.J., Lee B.J., J Biochem. 146(4), 535-540 (2009) https://doi.org/10.1093/jb/mvp098
  6. Pallen M.J. T., Trends Microbiol. 10(5), 209-212 (2002) https://doi.org/10.1016/S0966-842X(02)02345-4
  7. Hong Y.H., Park S.H., Lee K.L., Lee B.J., JKMRS. 5, 46-55 (2001)
  8. Delaglio F., Grzesiek S., Vuister G.W., Zhu G., Pfeifer J., Bax A., J Biomol NMR. 6(3), 277-293 (1995)
  9. Johnson B. A., Methods Mol Biol. 278, 313-352 (2004)
  10. Wishart D. S., Sykes B. D., J Biomol NMR. 4(2), 171-180 (1994)
  11. Cornilescu G., Delaglio F., Bax A., J Biomol NMR. 13(3), 289-302 (1999) https://doi.org/10.1023/A:1008392405740
  12. Metzler W. J., Constantine K. L., Friedrichs M. S., Bell A. J., Ernst E. G., Lavoie T. B., Mueller L., Biochem. 32(50), 13818-13829 (1993) https://doi.org/10.1021/bi00213a010
  13. Wishart D. S., Bigam C. G., Holm A., Hodges R. S., Sykes B. D., J Biomol NMR. 5(1), 67-81 (1995) https://doi.org/10.1007/BF00227471
  14. Spera S., Bax A., J. Am. Chem. Soc. 113(14), 5490-5492 (1991) https://doi.org/10.1021/ja00014a071