DOI QR코드

DOI QR Code

Lipase-catalyzed Esterification of (S)-Naproxen Ethyl Ester in Supercritical Carbon Dioxide

  • Kwon, Cheong-Hoon (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Jong-Ho (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University) ;
  • Kang, Jeong-Won (Department of Chemical and Biological Engineering, Korea University)
  • Published : 2009.12.31

Abstract

A lipase-catalyzed esterification reaction of (S)-naproxen ethyl ester by CALB (Candida antarctica lipase B) enzyme was performed in supercritical carbon dioxide. Experiments were performed in a high-pressure cell for 10 h at a stirring rate of 150 rpm over a temperature range of 313.15 to 333.15 K and a pressure range of 50 to 175 bar. The productivity of (S)-naproxen ethyl ester was compared with the result in ambient condition. The total reaction time and conversion yields of the catalyzed reaction in supercritical carbon dioxide were compared with those at ambient temperature and pressure. The experimental results show that the conversion and reaction rate were significantly improved at critical condition. The maximum conversion yield was 9.9% (216 h) at ambient condition and 68.9% (3 h) in supercritical state. The effects of varying amounts of enzyme and water were also examined and the optimum condition was found (7 g of enzyme and 2% water content).

Keywords

References

  1. Basheer, S., K. Mogi, and M. Nakajima. 1995. Surfactantmodified lipase for the catalysis of the interesterification of triglycerides and fatty acids. Biotechnol. Bioeng. 45: 187-195 https://doi.org/10.1002/bit.260450302
  2. Chang, C. S. and S. W. Tsai. 1997. A facile enzymatic process for the preparation of (S)-naproxen ester prodrug in organic solvents. Enzyme Microb. Technol. 20: 635-639 https://doi.org/10.1016/S0141-0229(96)00222-0
  3. Chi, Y. M., K. Nakamura, and T. Yano. 1988. Enzymic interesterification in supercritical carbon dioxide. Agric. Biol. Chem. 52: 1541-1550 https://doi.org/10.1271/bbb1961.52.1541
  4. Chiang, K. T. 2007. Modeling and optimization of designing parameters for a parallel-plain fin heat sink with confined impinging jet using the response surface methodology. Appl. Therm. Eng. 27: 2473-2482 https://doi.org/10.1016/j.applthermaleng.2007.02.004
  5. Cui, Y.-M., D.-Z. Wei, and J.-T. Yu. 1997. Lipase-catalyzed esterification in organic solvent to resolve racemic naproxen. Biotechnol. Lett. 19: 865-868 https://doi.org/10.1023/A:1018333503317
  6. Dominguez, A. P. M., D. Bizani, F. Cladera-Olivera, and A. Brandelli. 2007. Cerein 8A production in soybean protein using response surface methodology. Biochem. Eng. J. 35: 238-243 https://doi.org/10.1016/j.bej.2007.01.019
  7. Franck, E. U. and R. Deul. 1978. Dielectric behavior of methanol and related polar fluids at high pressures and temperatures. Faraday Discuss. Chem. Soc. 66: 191-198 https://doi.org/10.1039/dc9786600191
  8. Goldberg, M., D. Thomas, and M. D. Legoy. 1990. The control of lipase-catalysed transesterification and esterification rates. Effects of substrate polarity, water activity and water molecules on enzyme activity. Eur. J. Biochem. 190: 603-609 https://doi.org/10.1111/j.1432-1033.1990.tb15615.x
  9. Hayball, P. J. 1996. Chirality and nonsteroidal anti-inflammatory drugs. Drugs 52: 47-58
  10. Iso, M., B. Chen, M. Eguchi, T. Kudo, and S. Shrestha. 2001. Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J. Mol. Catal. B Enzym. 16: 53-58 https://doi.org/10.1016/S1381-1177(01)00045-5
  11. Junco, S., T. Casimiro, N. Ribeiro, M. D. Ponte, and H. M. Marques. 2002. Optimisation of supercritical carbon dioxide systems for complexation of naproxen: Beta-Cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 44: 69-73 https://doi.org/10.1023/A:1023028815180
  12. Kamat, S. V., E. J. Beckman, and A. J. Russell. 1995. Enzyme activity in supercritical fluids. Crit. Rev. Biotechnol. 15: 41-71 https://doi.org/10.3109/07388559509150531
  13. Kwon, C. H., D. Y. Shin, J. H. Lee, S. W. Kim, and J. W. Kang. 2007. Molecular modeling and its experimental verification for the catalytic mechanism of Candida antarctica lipase B. J. Microbiol. Biotechnol. 17: 1098-1105
  14. Lim, J. S., M. C. Park, J. H. Lee, S. W. Park, and S. W. Kim. 2005. Optimization of culture medium and conditions for neofructooligosaccharides production by Penicillium citrinum. Eur. Food Res. Technol. 221: 639-644 https://doi.org/10.1007/s00217-005-0070-6
  15. Mundra, P., K. Desai, and S. S. Lele. 2007. Application of response surface methodology to cell immobilization for the production of palatinose. Bioresour. Technol. 98: 2892-2896 https://doi.org/10.1016/j.biortech.2006.09.046
  16. Nnakamura, K., Y. M. Chi, Y. Yamada, and T. Yano. 1986. Lipase activity and stability in supercritical carbon dioxide. Chem. Eng. Commun. 45: 207-212 https://doi.org/10.1080/00986448608911384
  17. Ranucci, E., L. Sartore, I. Peroni, R. Latini, R. Bemasconi, and P. Ferruti. 1994. Pharmacokinetic results on naproxen prodrugs based on poly(ethyleneglycol)s. J. Biomater. Sci. Polym. Ed. 6: 141-147 https://doi.org/10.1163/156856294X00275
  18. Rocha, J., M. Gil, and F. Garcia. 1999. Optimisation of the enzymatic synthesis of noctyl oleate with immobilised lipase in the absence of solvents. J. Chem. Technol. Biotechnol. 74: 607-612 https://doi.org/10.1002/(SICI)1097-4660(199907)74:7<607::AID-JCTB74>3.0.CO;2-N
  19. Shanbhag, V. R., A. M. Crider, R. Gokhale, A. Harpalani, and R. M. Dick. 1992. Ester and amide prodrugs of ibuprofen and naproxen: Synthesis, anti-inflammatory activity, and gastrointestinal toxicity. J. Pharm. Sci. 81: 149-154 https://doi.org/10.1002/jps.2600810210
  20. Shang, C. S. and C. S. Hsu. 2003. Lipase-catalyzed enantioselective esterification of (S)-naproxen hydroxyalkyl ester in organic media. Biotechnol. Lett. 25: 413-416 https://doi.org/10.1023/A:1022948009889
  21. Shieh, C. J., H. F. Liao, and C. C. Lee. 2003. Optimization of lipase-catalyzed biodiesel by response surface methodology. Bioresource Technol. 88: 103-106 https://doi.org/10.1016/S0960-8524(02)00292-4
  22. Sunitha, K., J. K. Lee, and T. K. Oh. 1999. Optimization of medium components for phytase production by E. coli using response surface methodology. Bioprocess. Biosyst. Eng. 21: 477-481 https://doi.org/10.1007/PL00009086
  23. Tammara, V. K., M. M. Narurkar, A. M. Crider, and M. A. Khan. 1993. Synthesis and evaluation of morpholinoalkyl ester prodrugs of indomethacin and naproxen. Pharm. Res. 10: 1191-1199 https://doi.org/10.1023/A:1018976520391
  24. Tsai, S. W., S. F. Lin, and C. S. Chang. 1999. Lipase-catalyzed enantioselective esterification of S(+)-naproxen ester prodrugs in cyclohexane. J. Chem. Technol. Biotechnol. 74: 751-758 https://doi.org/10.1002/(SICI)1097-4660(199908)74:8<751::AID-JCTB86>3.0.CO;2-M
  25. Wu, J.-Y. and M.-T. Liang. 1999. Enhancement of enantioselectivity by altering alcohol concentration for esterification in supercritical $CO_2$. J. Chem. Eng. Japan 32: 338-340 https://doi.org/10.1252/jcej.32.338
  26. Yasmin, T., T. Jiang, B. Han, J. Zhang, and X. Ma. 2006. Transesterification reaction catalysed by Novozym 435 in supercritical carbon dioxide. J. Mol. Catal. B Enzym. 41: 27-31 https://doi.org/10.1016/j.molcatb.2006.04.001

Cited by

  1. Effect of reaction rate on converted products from wheat germ oil by immobilized lipase ethanolysis vol.22, pp.2, 2009, https://doi.org/10.1007/s10068-013-0080-2
  2. Kinetic Resolution of Profens by Enantioselective Esterification Catalyzed by Candida antarctica and Candida rugosa Lipases vol.26, pp.10, 2014, https://doi.org/10.1002/chir.22362
  3. Analysis of Heme Biosynthetic Pathways in a Recombinant Escherichia coli vol.25, pp.6, 2009, https://doi.org/10.4014/jmb.1411.11050
  4. A membrane‐bound esterase PA2949 from Pseudomonas aeruginosa is expressed and purified from Escherichia coli vol.6, pp.5, 2009, https://doi.org/10.1002/2211-5463.12061
  5. Esterification of Dicarboxylic Acids with 2-Ethylhexanol under Supercritical Conditions vol.11, pp.7, 2017, https://doi.org/10.1134/s1990793117070119
  6. Expression and Activity of the BioH Esterase of Biotin Synthesis is Independent of Genome Context vol.7, pp.None, 2009, https://doi.org/10.1038/s41598-017-01490-0
  7. Metabolic engineering of Escherichia coli for secretory production of free haem vol.1, pp.9, 2009, https://doi.org/10.1038/s41929-018-0126-1
  8. Advances in microbial production of medium-chain dicarboxylic acids for nylon materials vol.5, pp.2, 2009, https://doi.org/10.1039/c9re00338j