DOI QR코드

DOI QR Code

Effect of Calcium Chloride (CaCl2) on the Characteristics of Photosynthetic Apparatus, Stomatal Conductance, and Fluorescence Image of the Leaves of Cornus kousa

염화칼슘 처리가 산딸나무 잎의 광합성 기구, 기공전도도 및 형광이미지 특성에 미치는 영향

  • Sung, Joo-Han (Department of Forest Conservation, Korea Forest Research Institute) ;
  • Je, Sun-Mi (Department of Forest Conservation, Korea Forest Research Institute) ;
  • Kim, Sun-Hee (Department of Forest Conservation, Korea Forest Research Institute) ;
  • Kim, Young-Kul (Department of Forest Conservation, Korea Forest Research Institute)
  • 성주한 (국립산림학원 산림보전부) ;
  • 제선미 (국립산림학원 산림보전부) ;
  • 김선희 (국립산림학원 산림보전부) ;
  • 김영걸 (국립산림학원 산림보전부)
  • Published : 2009.12.30

Abstract

Deicing salt is used to melt snow and ice on the road for traffic safety during the winter season, which accumulates in the roadside vegetation and induces visible injuries. The damage may accelerate particularly when it coincides with early spring leaf out. In order to better understand the response mechanisms, C. kousa (3-year-old) was irrigated twice prior to leaf bud in a rhizosphere with solutions of 0.5, 1.0, and 3.0% calcium chloride ($CaCl_2$) concentration, that were made by using an industrial $CaCl_2$ reagent practical deicing material in Seoul. Physiological traits of the mature leaves were progressively reduced by $CaCl_2$ treatment, resulting in reductions of total chlorophyll contents, chlorophyll a:b, photosynthetic rate, quantum yield, stomatal conductance, $F_V/F_M$, and NPQ. On the contrary, light compensation point and dark respiration were increased at high $CaCl_2$ concentration. A decrease in intercellular $CO_2$ concentration by stomatal closure first resulted in a reduced photosynthetic rate and then was accompanied by low substance metabolic rates and photochemical damage. Based on the reduction of physiological activities at all treatments ($CaCl_2$ 0.5%, 1.0%, and 3.0%), C. kousa was determined as one of the sensitive species to $CaCl_2$.

겨울철 도로의 안전을 위해서 사용되고 있는 제설제가 가로변의 식생에 축적이 되면 식물에 피해를 가져올 수 있는데, 특히 이른 봄의 제설제 사용은 식물이 다량의 수분을 요구하게 되는 개엽 시기와 맞물리게 되면서 그 피해가 가속화 될 수 있다. 우리나라에서 주로 사용하고 있는 제설제인 $CaCl_2$ 으로 산딸나무(C.kousa) 3년생 유묘를 대상으로 개엽 전 대조구를 포함해 각 처리구당 3본씩 선정하여 배치하고 각각 $CaCl_2$ 0.5%, 1.0%, 3.0% 를 2회 근권부에 처리하였다. 먼저, 가시적 피해 현상으로 잎눈에서 개엽이 어려워지며, 잎의 전개 후에도 시들음 현상과 잎끝마름 현상 등이 나타났다. $CaCl_2$ 의 농도가 높아짐에 따라 산딸나무의 피해가 가중되었는데, $CaCl_2$ 처리에 따른 생리적 반응은 총엽록소함량, 엽록소 a:b, 광합성속도, 양자수율, 기공전도도, $F_V/F_M$, NPQ의 감소를 가져왔다. 반면 광보상점과 암호흡속도의 증가를 나타냈다. 기공의 닫힘으로 인한 엽육내 $CO_2$ 농도 저하와 이로 인한 광합성속도의 감소가 1차적으로 일어나고 이후 물질대사량의 감소, 광화학계의 피해가 동반되는 것을 알 수 있었다. 모든 $CaCl_2$ 처리농도에서 산딸나무의 생리적 활동이 급격히 저하되는 경향으로 볼 때 $CaCl_2$ 에 민감한 수종으로 판단된다.

Keywords

References

  1. Abreu, M. E., and S. Munn$\acute{e}$-Bosch, 2008: Salicylic acid may be involved in the regula-tion of drought-induced leaf senescence in perennials: A case study in fieldgrown Salvia officinalis L. plants, Environmental and Experimental Botany 64(2), 105-112 https://doi.org/10.1016/j.envexpbot.2007.12.016
  2. Agastian, P., S. J. Kingsley, and M. Vivekanandan, 2000: Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes, Photosynthetica 38, 287-290 https://doi.org/10.1023/A:1007266932623
  3. Arnon, D. I., 1949: Copper enzymes in isolated chloroplasts, polyphenol-oxidase in Betulavulgaris, Plant Physiology 24, 1-15 https://doi.org/10.1104/pp.24.1.1
  4. Ashraf, M., M. Arfan, M. Shahbaz, M. Ahmad, and A. Jamil, 2002: Gas exchange characteristics and water relation in some elite skra cultivars under water deficit, Photosynthetica 40(4), 615-620 https://doi.org/10.1023/A:1024368522742
  5. Gadallah, M. A. A., 1999: Effects of proline and glycinebetaine on Vicia faba response to salt stress, Biology Plant 42, 249-257 https://doi.org/10.1023/A:1002164719609
  6. Glynn, C. P., A. F. Gillia, and G. Oxenham, 2003: Foliar salt tolerance of Acer genotypes using chlorophyll fluorescence, Journal of Arboriculture 29(2), 61-65
  7. Grattan, S. R., and E. V. Maas, 1988: Effect of salinity on phosphate accumulation and injuryin soybean, I. Influence of CaCl/NaCI ratios, Plant Soil 105, 25-32 https://doi.org/10.1007/BF02371139
  8. Greenway, H., and R. Munns, 1980: Mechanisms of salt tolerance in non-halophytes, Annual Review Plant Physiology 31, 149-190 https://doi.org/10.1146/annurev.pp.31.060180.001053
  9. Gulzar, S., M. A. Khan, and I. A. Ungar, 2003: Salt tolerance of a coastal salt marsh grass, Communications in Soil Science and Plant Analysis 34, 2595-2605 https://doi.org/10.1081/CSS-120024787
  10. Hagemann, M., and N. Murata, 2003: Glucosylglycerol, a compatible solute, sustains cell division under salt stress, Plant Physiology 131, 1628-1637 https://doi.org/10.1104/pp.102.017277
  11. Hernandez, J.A., E. Olmos, F. J. Corpas, F. Sevilla, and L. A. del Rio, 1995: Salt-induced oxidative stress in chloroplasts of pea plant, Plant Science 105, 151-167 https://doi.org/10.1016/0168-9452(94)04047-8
  12. James, A. R., 2002: Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat, Functional plant biology 29(12), 1393-1403 https://doi.org/10.1071/FP02069
  13. Kim, P. G., Y. S. Yi, D. J. Chung, S. Y. Woo, J. H. Sung, and E. J. Lee, 2001: Effects of light Intensity of photosynthetic activity of shade tolerant and intolerant tree species, Journal of Korean Forest Society 90(4), 476-487
  14. Korea Forest Service, 2009: A Guideline for Street Trees, 2pp. (in Korean)
  15. Lawson, T., S. Lefebvre, N. R. Baker, J. I. L. Morison, and C. A. Baines, 2008: Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2, Journal of Experimental Botany 59(13), 3609-3619 https://doi.org/10.1093/jxb/ern211
  16. Lee, H. Y., Y. I. Park, and Y. N. Hong, 2007: Effects of Ultraviolet-B Radiation on Photosynthesis in Tobacco (Nicotiana tabacum cv. Petit Havana SR1) Leaves, Korean Journal of Environmental Agriculture 26(3), 239-245 https://doi.org/10.5338/KJEA.2007.26.3.239
  17. Lu, C. M., N. W. Qiu, Q. T. Lu, B. S. Wang, and T. Y. Kuang, 2002: Dose salt stress lead to increased susceptibility of photosystem II to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors? Plant Science 163, 1063-1068 https://doi.org/10.1016/S0168-9452(02)00281-9
  18. Maricle, B. R., R. W. Lee, C. E. Hellquist, O. Kirasts, and G. E. Edwards, 2007: Effects of salinity on chlorophyll fluorescence and CO2 fixation in C4 estuarine grasses, Photosynthetica 45(3), 433-440 https://doi.org/10.1007/s11099-007-0072-7
  19. Ministry of Construction and Transportation, 2003: Handbook of the roads clear of snow 29pp. (in Korean)
  20. Muraoka, H., H. Koizumi, and R. W. Pearcy, 2003: Leaf display and photosynthesis of tree seedlings in a cool temperate deciduous broad leaf forest understory, Oecologia135, 500-509 https://doi.org/10.1007/s00442-003-1227-2
  21. Parida, A. K., A. B. Das, and B. Mittra, 2004: Effects of salt on growth, ion accumulation photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora, Trees Structure Function 18, 167-174 https://doi.org/10.1007/s00468-003-0293-8
  22. Ripullone, F., M. R. Guerrieri, A. Nole, F. Magnani, and M. Borhetti, 2007: Stomatal conductance and leaf water potential responses to hydraulic conductance variation Pinus pinaster seedlings, Trees 21, 371-378 https://doi.org/10.1007/s00468-007-0130-6
  23. Ryang, S. Z., S. Y. Woo, and S. M. Je, 2007: Antioxidant enzyme, chlorophyll contents and stomatal changes of five tree species under ozone stress, Journal of Korean Forest Society 96(4), 470-476 (in Korean with English abstract)
  24. Syvertsen, J. P., J. Lloyd, and P. E Kriedemann, 1988: Salinity and drought stress effects on foliar ion concentration, water relations, and photosynthetic characteristics of orchard citrus, Australian Journal of Agricultural Research 39(4), 619-627 https://doi.org/10.1071/AR9880619
  25. Takemura, T., N. Hangata, K. Sugihara, S. Baba, I. Karube, and Z. Dubinsky, 2000: Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza, Aquatic Botany 68, 15-28 https://doi.org/10.1016/S0304-3770(00)00106-6
  26. Timm, H. C., J. Stegemann, and M. Küppers, 2002: Photosynthetic induction strongly affects the light conpensation point of net photosynthesis and coincidentally the apparent quantum yield, Trees 16, 47-62 https://doi.org/10.1007/s004680100123
  27. Walker, R. R., E. Torokfalvy, and W. J. S. Downton, 1982: Photosynthetic Responses of the Citrus Varieties Rangpur Lime and Etrog Citron to Salt Treatment, Australian Journal of Plant Physiology 9(6), 783-790 https://doi.org/10.1071/PP9820783
  28. http://www.kma.go.kr(2009.11.1)
  29. http://www.nature.go.kr(2009.11.1)

Cited by

  1. Effect of Chloride-deicers on Growth of Wheat, Barley and Spinach vol.33, pp.4, 2014, https://doi.org/10.5338/KJEA.2014.33.4.350
  2. Growth Performance and Photosynthesis of Two Deciduous Hardwood Species under Different Irrigation Period Treatments in a Container Nursery System vol.14, pp.1, 2012, https://doi.org/10.5532/KJAFM.2012.14.1.028
  3. Photosynthetic Characteristics of Sedum takevimense on Various Moisture Conditions in a Green Roof System vol.41, pp.6, 2013, https://doi.org/10.9715/KILA.2013.41.6.140
  4. Effect of Calcium Chloride Concentration on Roadside Ground Cover Plant Growth vol.41, pp.4, 2013, https://doi.org/10.9715/KILA.2013.41.4.017
  5. Implications of CaCl2 application to plants in LID facilities vol.78, pp.5, 2018, https://doi.org/10.2166/wst.2018.364