pH Dependence on the Degradation of Rhodamine B by Fe-ACF/$TiO_2$ Composites and Effect of Different Fe Precursors

Fe-ACF/$TiO_2$ 복합체에 의한 로다민 B 용액의 분해에 있어서 pH 의존성 및 여러 가지 Fe 전구체의 효과

  • Zhang, Kan (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • 장간 (한서대학교 신소재공학과) ;
  • 오원춘 (한서대학교 신소재공학과)
  • Published : 2009.12.31

Abstract

Iron-loaded activated carbon fibers (Fe-ACF) supported titanium dioxide ($TiO_2$) photocatalyst (Fe-ACF/$TiO_2$) was synthesized using a sol-gel method. Three different types of Fe-ACF/$TiO_2$ were obtained by treatment with different precursor of Fe, and characterized using BET, SEM, XRD and EDX analysis. The photocatalytic activity of Fe-ACF/$TiO_2$ was investigated by the degradation of Rhodamine B (Rh.B) solution under UV irradiation. From the experimental results, it was revealed that Fe-ACF/$TiO_2$ composites show considerable photocatalytic ability for the removal of Rh.B by comparing non-treated ACF/$TiO_2$ composites. And photo-Fenton reaction with Fe element was incoordinately influenced due to different precursor of Fe. It clearly indicates that Fe-ACF/$TiO_2$ composites prepared using $FeCl_3$ provided the highest photo-Fenton activity, then, which was affected by pH changes on the degradation of Rh.B.

졸-겔 방법을 사용하여 Fe-ACF/$TiO_2$ 복합체 광촉매를 제조하였다. 여러 가지 철 전구체를 사용하여 세가지 Fe-ACF/$TiO_2$ 복합체를 제조하고 BET, SEM, XRD 및 EDX를 사용하여 특성화 하였다. UV 조사에서 Rh.B 용액의 분해에 의거하여 Fe-ACF/$TiO_2$ 복합체의 광촉매 특성을 파악 하였다. 실험 결과로부터, Fe-ACF/$TiO_2$ 복합체는 ACF/$TiO_2$ 복합체 보다 Rh.B의 제거 효과가 더 우수함을 나타내었다. 또한 여러 가지 Fe 전구체 사용으로 인한 Fe 원소의 포토-펜톤 효과는 다르게 나타났다. $FeCl_3$을 사용하여 제조된 Fe-ACF/$TiO_2$ 복합체는 가장 우수한 포토-펜톤 효과를 나타내었고, pH 변화에 의존하여 Rh.B 용액 분해에 대하여 영향을 주었다.

Keywords

References

  1. J. H. Braun, A. Baidins, and R. E. Marganski, 'TiO_2 pigment technology: a review', Prog. Org. Coat., 20, 105 (1992) https://doi.org/10.1016/0033-0655(92)80001-D
  2. N. Dubey, N. K. Labhsetwar, S. S. Rayalu, and S. Devotta, 'Hydrogen evolution by water splitting using novel composite zeolite-based photocatalyst', Catal. Today., 129, 428 (2007) https://doi.org/10.1016/j.cattod.2006.09.041
  3. C. A. Linkous, G. J. Carter, D. B. Locuson, A. J. Ouellette, D. K. Slattery, and L. A. Smitha, 'Photocatalytic Inhibition of Algae Growth Using TiO_2, WO_3, and Cocatalyst Modifications', Environ. Sci. Technol., 34, 4754 (2000) https://doi.org/10.1021/es001080+
  4. M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, 'Environmental applications of semixonductor photocatalysis', Chem. Rev., 95, 69 (1995) https://doi.org/10.1021/cr00033a004
  5. A. L. Linsebigler, G. Q. Lu, and J. T. Yates, 'Photocatalysis on TiO_2 surfaces: principles, mechanisms, and selected results', Chem. Rev., 95, 735 (1995) https://doi.org/10.1021/cr00035a013
  6. N. Negishi, T. Iyoda, K. Hashimoto, and A. Fujishima, 'Preparation of transparent TiO_2 thin-film photocatalyst and its photocatalytic activity', Chem. Lett., 24, 841 (1995)
  7. I. Sopyan, M. Watanabe, and S. Murasawa, 'Efficient TiO_2 powder and film photocatalysts with rutile crystal structure', Chem. Lett., 1, 69 (1996)
  8. T. Torimoto, S. Ito, S. Kuwabata, and H. Yoneyama, 'Effects of Adsorbents Used as Supports for Titanium Dioxide Loading on Photocatalytic Degradation of Propyzamide', Environ. Sci. Technol., 30, 1275 (1996) https://doi.org/10.1021/es950483k
  9. W. Choi, A. Termin, and M. Hoffmann, 'The Role of Metal- Ion Dopants in Quantum-Sized TiO_2: Correlation between Photoreactivity and Charge-Carrier Recombination Dynamics', J. Phys. Chem., 98, 13669 (1994) https://doi.org/10.1021/j100102a038
  10. W. Shockley and W. T. Read, 'Statistics of the Recombinations of Holes and Electrons', J. Phys. Rev., 87, 835 (1952) https://doi.org/10.1103/PhysRev.87.835
  11. A.sahi,T.Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, 'Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides', Science, 293, 269 (2001) https://doi.org/10.1126/science.1061051
  12. V. Vamathevan, H. Tse, R. Amal, G. Low, and S. McEvoy, 'Effects of $Fe^{3+}$ and Ag^+ ions on the photocatalytic degradation of sucrose in water', Catal. Today., 68, 201 (2001) https://doi.org/10.1016/S0920-5861(01)00301-7
  13. C. Huanga, W. P. Hsieh, J. R. Pan, and S. M. Changa, 'Characteristic of an innovative ${TiO_2}/{Fe^0}$ composite for treatment of azo dye', Sep. Purif. Technol., 58, 152 (2007) https://doi.org/10.1016/j.seppur.2007.07.034
  14. T. K. Ghorai, S. K. Biswas, and P. Pramanik, 'Photooxidation of different organic dyes (RB, MO, TB, and BG) using Fe(III)-doped TiO_2 nanophotocatalyst prepared by novel chemical method', Appl. Surf. Sci., 254, 7498 (2008) https://doi.org/10.1016/j.apsusc.2008.06.042
  15. M. Pera-Titus, V. Garc´ıa-Molina, M. A. Banos, J. Gimenez, and S. Esplugas, 'Degradation of chlorophenols by means of advanced oxidation processes: a general review', Appl Catal B: Environ., 47, 219 (2004) https://doi.org/10.1016/j.apcatb.2003.09.010
  16. M. Neamtu, A. Yediler, I. Siminiceanu, and A. Kettrup, 'Oxidation of commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton-like processes', J. Photochem. and Photobio. A: Chem., 161, 87 (2003) https://doi.org/10.1016/S1010-6030(03)00270-3
  17. M. I. Franch, J. A. Ayllon, J. Peral, and X. Domenech, 'Fe(III) photocatalyzed degradation of low chain carboxylic acids implications of the iron salt', Appl. Catal. B: Environ., 50, 89 (2004) https://doi.org/10.1016/j.apcatb.2003.12.024
  18. H. Fallmann, T. Krutzler, R. Bauer, S. Malato, and J. Blanco, 'Applicability of the Photo-Fenton method for treating water containing pesticides', Catal. Today., 54, 309 (1999) https://doi.org/10.1016/S0920-5861(99)00192-3
  19. R. Bauer, G. Waldner, H. Fallmann, S. Hager, M. Klare, T. Krutzler, S. Malato, and P. Maletzky, 'The photo-fenton reaction and the TiO_2/UV process for waste water treatment novel developments', Catal. Today., 53, 131 (1999) https://doi.org/10.1016/S0920-5861(99)00108-X
  20. K. Zhang, Z. D. Meng, W. B. Ko, and W. C. Oh, 'Fabrication of Fe-ACF/TiO_2 Composites and Their Photonic Activity for Organic Dye', Anal. Sci. Technol., 22, 254 (2009)
  21. A. Ninh Phama, A. L. Rosea, A. J. Feitza and T. David Waite, 'Kinetics of Fe(III) precipitation in aqueous solutions at pH 6.0-9.5 and ${25^{\circ}C}$', Geochimica et Cosmochimica Acta., 70, 640 (2006) https://doi.org/10.1016/j.gca.2005.10.018
  22. J. Subrt, V. Stengl, and M. Skokánek, 'Decomposition of ferrihydrite prepared from Fe(NO_3)_3 aqueous solutions under varying Ph', Thermochimica Acta., 211, 107 (1992) https://doi.org/10.1016/0040-6031(92)87011-X
  23. E. Evgenidou, K. Fytianos, and I. Poulios, 'Photocatalytic oxidation of dimethoate in aqueous solutions', J. Photochem. Photobiol. A: Chem., 175, 29 (2005) https://doi.org/10.1016/j.jphotochem.2005.04.021
  24. A. Piscopo, D. Robert and J.V. Weber, 'Influence of pH and chloride anion on the photocatalytic degradation of organic compounds: Part I. Effect on the benzamide and para-hydroxybenzoic acid in TiO_2 aqueous solution', Appl. Catal. B:Environ., 35, 117 (2001) https://doi.org/10.1016/S0926-3373(01)00244-2
  25. X. Zhu, C. Yuan, Y. Bao, J. Yang, and Y. Wu, 'Photocatalytic degradation of pesticide pyridaben on $TiO_2$ particles', J. Mol. Catal. A., 229, 95 (2005) https://doi.org/10.1016/j.molcata.2004.11.010
  26. H. S. Son, G. Ko, and K. D. Zoh, 'Kinetics and mechanism of photolysis and TiO_2 photocatalysis of triclosan', J. Hazard. Mater., 166, 954 (2009) https://doi.org/10.1016/j.jhazmat.2008.11.107
  27. C. S. Lu, C. C. Chen, F. D. Mai, and H. K. Li, 'Identification of the degradation pathways of alkanolamines with TiO2 photocatalysis', J. Hazard. Mater., 165, 306 (2009) https://doi.org/10.1016/j.jhazmat.2008.09.127
  28. W. C. Oh, F. J. Zhang, M. L. Chen, Y. M. Lee, and W. B. Ko, 'Characterization and relative photonic efficiencies of a new Fe-ACF/TiO_2 composite photocatalysts designed for organic dye decomposition', J. Indust. Engin. Chem., 15, 190 (2009) https://doi.org/10.1016/j.jiec.2008.09.019
  29. W. C. Oh and M. L. Chen, 'Electrochemical Preparation of TiO_2/ACF Composites With TNB Electrolyte and Their Photocatalytic Effect', J. Ceram. Process. Res., 9, 100 (2008)
  30. F. SuarezGarca, A. Martnez-Alonso, and J. M.D. Tascon, 'Activated carbon fibers from Nomex by chemical activation with phosphoric acid', Carbon., 42, 1419 (2004) https://doi.org/10.1016/j.carbon.2003.11.011
  31. Z. H. Huang, F. Y. Kang, W. L. Huang, J. B. Yang, K. M. Liang, M. L. Cui, and Z. Y. Cheng, 'Pore structure and fractal characteristics of activated carbon fibers characterized by using HRTEM', J. Colloid Interface Sci., 249, 453 (2002) https://doi.org/10.1006/jcis.2002.8274
  32. Y. G. Go, F. J. Zhang, M. L. Chen, and W. C. Oh, 'Fabrication of Zn-treated ACF/TiO2 Composites and Their Photocataytic Activity for Degradation of Methylene Blue', J. Mater. Res., 19, 142 (2009)
  33. F. J. Zhang, M.L. Chen, and W.C. Oh, 'Synthesis and Characterization of CNT/TiO_2 Photoelectrocatalytic Electrodes for Methlene Blue Degradation', Kor. J. Mater. Res., dio: 10.3740/MRSK.2008.18.9.000
  34. W. D. Wang, P. Serp, P. Kalck, and J. L. Faria, 'Visible Light Photodegradation of Phenol on MWNT-TiO_2 Composite Catalysts Prepared by a Modified Sol-Gel Method', J. Mole. Catal.A: Chem., 235, 194 (2005) https://doi.org/10.1016/j.molcata.2005.02.027
  35. M. L. Chen, C. S Lim, and W. C. Oh, 'Photocatalytic Effect For TiO_2/ACF Composite Electrochemically Prepared With TNB Electrolyte', Carbon lett., 8, 177 (2007) https://doi.org/10.5714/CL.2007.8.3.177
  36. W. C. Oh and M. L. Chen, 'Formation of TiO_2 composites on activated carbon modified by nitric acid and their photocatalytic activity', J. Ceram. Proc. Res., 8, 316 (2007)
  37. W. C. Oh, S. B. Han, and J.S. Bae, 'Preparation of Fullerene/ TiO_2 Composite and Its Photocatalytic Effect', Anal. Sci. Technol., 20, 279 (2007)
  38. M. L. Chen, J. S. Bae, and W.C. Oh, 'Preparation of Carbon-Coated TiO_2 at Different Heat treatment Temperatures and Their Photocatalytic', Carbon. Sci., 7, 259 (2006)
  39. M. L. Chen, J. S. Bae, and W.C. Oh, 'Characterization of AC/TiO_2 Composite Prepared withPitch Binder and Their Photocatalytic Activity', Bull. Kor. Chem. Soc., 27, 1423 (2006) https://doi.org/10.5012/bkcs.2006.27.9.1423
  40. M. L. Chen, J. S. Bae, Y.S. Ko, and W.C. Oh, 'Characterization of composite prepared withdifferent mixing ratios of TiO_2 to activated carbpn and their photocatalytic activity', Anal. Sci. Technol., 19, 376 (2006)
  41. M. L. Chen, J. S. Bae, and W.C. Oh, 'Photocatalytic effect for the pith-coated TiO_2', Anal. Sci. Technol., 19, 301 (2006)
  42. M. Inagaki, Y. Hirose, T. Matsunage, T. Tsumura, and M. Toyoda, 'Carbon coating of anatase-type TiO_2 through their precipitation in PVA aqueous solution', Carbon., 41, 2619 (2003) https://doi.org/10.1016/S0008-6223(03)00340-3
  43. K. Nagaveni, M.S. Hedge, and G. Madras, 'Structure and Photocatalytic Activity of Ti1-xMxO2±$\delta$ (M = W, V, Ce, Zr, Fe, and Cu) Synthesized by Solution Combustion Method', J. Phys. Chem. B., 108, 20204 (2004) https://doi.org/10.1021/jp047917v
  44. C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, and J.M. Herrmann, 'Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO_2 comparison of the efficiency of powder and supported TiO_2', J. Photochem and Photobio A: Chem., 158, 27 (2003) https://doi.org/10.1016/S1010-6030(03)00016-9
  45. M. Carrier, N. Perol, J.M. Herrmann, C. Bordes, S. Horikoshi, J.O. Paisse, R. Baudot, and C. Guillard, 'Kinetics and reactional pathway of Imazapyr photocatalytic degradation Influence of pH and metallic ions', Appl. Cata.B: Environ., 65, 11 (2006) https://doi.org/10.1016/j.apcatb.2005.11.014
  46. W. Baran, E. Adamek, A. Sobczak, and A. Makowski, 'Photocatalytic degradation of sulfa drugs with TiO_2, Fe salts and $TiO_2/FeCl_3$ in aquatic environment-Kinetics and degradation pathway', Appl. Catal. B: Environ., 90, 516 (2009) https://doi.org/10.1016/j.apcatb.2009.04.014
  47. W. Baran, E. Adamek, A. Sobczak, and J. Sochacka, 'The comparison of photocatalytic activity of Fe-salts, TiO_2 and $TiO_2/FeCl_3$during the sulfanilamide degradation process' Catal. Communications., 10, 811 (2009) https://doi.org/10.1016/j.catcom.2008.12.026