Analysis on Turbulent Scalar Field in a Channel with Wall Injection using LES Technique

LES기법을 이용한 벽면 분출이 있는 채널 내부의 난류 유동 및 스칼라장 특성 해석

  • 나양 (건국대학교 기계공학과)
  • Published : 2009.04.30

Abstract

Large eddy simulation was conducted for flow development in a chamber with wall injection which simulates the cold flow in an idealized hybrid rocket motor. It was found that a peculiar timescale, roughly corresponding to St~0.5, resides in the flowfield resulting from the interaction between the main oxidizer and wall injected flows. However, the fact that this time characteristics is absent in the temperature field in the vicinity of the wall indicates that even a small regression rate renders the passive scalar, such as temperature, dissimilar to the velocity field. This implies that a classical approach, which assumes that constant turbulent Prandtl number, should be replaced by a more sophisticated turbulence models to accurately predict the temperature field in the hybrid motor.

이상화된 하이브리드 로켓모터 내부의 난류 유동 및 온도장의 발달과정을 대와류모사 기법을 사용하여 살펴보았다. 화학반응 및 밀도의 변화를 고려하지는 않았으나, 물리적으로 타당한 난류 입구조건과 22,500의 높은 Reynolds수 및 regression에 의한 벽면분출을 고려하여, 벽면근처에서 일어나는 난류유동의 시간 특성을 파악하였다. 하이브리드 모터 내부에서 발생한 혼합전단층의 불안정성에 기인한 특정 시간스케일(St~0.5)이 수동스칼라장에서 검출되지 않았다는 사실은 난류 온도장 해석에 난류 Prandtl 수를 상수로 가정하는 기존의 접근방식이 상당한 오차를 발생시킬 수 있다는 것을 의미한다.

Keywords

References

  1. 나양, 이창진, '분출유동이 있는 채널 난류유동의 LES해석,' 한국항공우주공학회지, 제35권, 제 8호, 2007, pp.699-705 https://doi.org/10.5139/JKSAS.2007.35.8.699
  2. Na, Y. and Lee, C., 'Intrinsic Flow Oscillation in Channel Flow with Wall Blowing,' 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July 2008, Harford, CT, U.S.A
  3. Lee, C. and Na, Y.,'Large Eddy Simulation of Flow Development in Chamber with Surface Mass Injection,' J. mPropulsion and Power, Vol. 25, No. 1, 2009, pp.51-59 https://doi.org/10.2514/1.34980
  4. 구원모, 이창진, '하이브리드 로켓의 불안정연소 특성 가시화,' 한국추진공학지, 제11권, 4호, 2007, pp.46-51
  5. Evans, B., Favorito, N. A. and Kuo, K. K., 'Oxidizer-Type and Aluminum Particle Addition Effects on Solid Fuel Burning Behavior,' AIAA Paper 2006-4676, 2006
  6. Zang, Y. Street, R. L. and Koseff, J. R., 'A Dynamic Mixed Subgrid-scale Model and its Application to Turbulent Recirculating Flows,' Physics of Fluids A, Vol. 5, No.12, 1993, pp.3186-3196 https://doi.org/10.1063/1.858675
  7. Na, Y., "On the Large Eddy Simulation of Scalar Transport with Prandtl Number up to 10 Using Dynamic Mixed Model,' Journal of Mechanical Science and Technology, Vol. 19, No. 3, 2005, pp. 913-923 https://doi.org/10.1007/BF02916140
  8. Na, Y, 'Direct Numerical Simulation of Turbulent Scalar Field in a Channel with Wall Injection,' Numerical Heat Transfer, Part A, Vol. 47, No. 2, 2005, pp.165-181 https://doi.org/10.1080/10407780490520805
  9. Leonard, B. P., 'A stable and Accurate Convective Modeling Procedure Based on Quadratic Upstream Interpolation,' Computer Methods in Applied Mechanics and Engineering, Vol. 19, No. 1, 1979, pp.59-98 https://doi.org/10.1016/0045-7825(79)90034-3
  10. Lund, T., Wu, X. and Squires, K. D., 'Generation of Turbulent Inflow Data for Spatially Developing Boundary Layer Simulation, Journal of Computational Physics, Vol. 140, No. 2, 1998, pp.233-258 https://doi.org/10.1006/jcph.1998.5882
  11. Zhou, J. Meinhart, C. D., Balachandra, S. and Adrian, R. J., 'Formation of Coherent Packets in Wall Turbulence,' Self-Sustaining Mechanics of Wall Turbulence, edited by R. L. Panton, Computational Mechanics Publications, Boston, MA, 1997, pp.109-134
  12. Eaton, J. K. and Johnston, J. P., 'Turbulent Flow Reattachment: An experimental study of the flow and structure behibnd a backward-facing step,' Report No. MD-99, Dept. of Mechanical Engineeing, Stanford University, 1980
  13. Le, H., Moin, P. and Kim, J., "Direct Numerical Simulation of Turbulent Flow Over a Backward-facing Step," J. Fluid Mech., Vol. 330, 1997, pp.349-374 https://doi.org/10.1017/S0022112096003941
  14. Camussi, R., Felli, M., Pereira, F., Aloisio, G. and Marco, A. D., 'Statistical Properties of Wall Pressure Fluctuations Over a Forward-facing Step,' Physics of Fluids, Vol. 20, 2008, 075113-1-075113-13 https://doi.org/10.1063/1.2959172