Browning and Moisture Sorption Characteristics of Rubus coreanus Prepared by Different Drying Methods

건조방법에 따른 복분자 분말의 갈변 및 흡습 특성

  • Chung, Hun-Sik (Food & Bio-Industry Research Institute, Kyungpook National University) ;
  • Seong, Jong-Hwan (Department of Food Science and Technology, Pusan National University) ;
  • Lee, Young-Guen (Department of Food Science and Technology, Pusan National University) ;
  • Kim, Han-Soo (Department of Food Science and Technology, Pusan National University) ;
  • Lee, Joo-Baek (Department of Hotel Cooking & Beverage, Daegu Health College) ;
  • Youn, Kwang-Sup (Department of Food Science and Technology, Catholic University of Daegu)
  • 정헌식 (경북대학교 식품생물산업연구소) ;
  • 성종환 (부산대학교 식품공학과) ;
  • 이영근 (부산대학교 식품공학과) ;
  • 김한수 (부산대학교 식품공학과) ;
  • 이주백 (대구보건대학 호텔외식조리계열) ;
  • 윤광섭 (대구가톨릭대학교 외식식품산업학부)
  • Published : 2009.12.30

Abstract

The effects of drying methods on the browning and moisture sorption characteristics of Rubus coreanus were studied. Fruits were steamed for 5 min at $100^{\circ}C$, dried by sun drying, infrared drying, or freeze drying, and powdered to a size of 20 mesh. Color values were measured and equilibrium moisture contents (EMC) were determined at $20^{\circ}C$, over a range of water activity ($a_w$) from 0.11 to 0.90. The browning indices $L^*$ and $a^*$ values were higher and lower, respectively, in freeze-dried Rubus coreanus compared with other samples. The $b^*$ value was greatest in freeze-dried Rubus coreanus. EMC tended to increase with increasing $a_w$ values, and a particularly sharp increment was observed above 0.75 $a_w$. The EMC of freeze-dried Rubus coreanus was significantly higher compared with the EMC of sun-dried and infrared-dried fruit at constant aw. The moisture sorption isotherms showed a typical sigmoid shape, and the Halsey, Kuhn, and Oswin models were the best fits for the sun-dried, infrared-dried, and freeze-dried powder isotherms, respectively. With respect to monolayer moisture content, the Guggenheim-Anderson-Boer (GAB) equation showed that the various drying methods yielded very different results, with monolayer moisture contents of 0.005 g $H_2O/g$ dry solid in infrared-dried and 0.019 g $H_2O/g$ dry solid in sun- and freeze-dried powders, respectively. These results indicate that the drying method affects the browning and moisture sorption characteristics of Rubus coreanus.

건조방법이 복분자 분말의 갈변 및 흡습 특성에 미치는 영향을 조사하기 위하여, 신선 복분자를 천일, 적외선 및 동결 건조한 다음 분쇄하고 이 분말의 색도와 수분활성도 ($a_w$) 0.11-0.90 범위에서 평형수분함량(EMC)을 각각 측정하였다. 갈변지표인 $L^*$값과 $a^*$값은 동결 건조한 복분자 분말이 다른 방법으로 건조한 분말보다 높고 낮은 값을 나타내었고, 황색도인 $b^*$값은 동결 건조 분말에서 가장 높은 수준을 보였다. EMC는 $a_w$의 증가와 함께 증가하는 경향을 보였으며 특히, 0.75 $a_w$ 이상에서 급격하게 증가하였다. 동일한 $a_w$에서 분말의 EMC는 동결건조품이 천일과 적외선 건조품 보다 유의적으로 높게 나타났다. 복분자 분말의 흡습곡선은 전형적인 sigmoid 형태를 보였고, 천일건조 분말은 Halsey model, 적외선 건조 분말은 Kuhn model, 그리고 동결 건조 분말은 Oswin model이 적합도가 가장 높았다. 단분자층 수분함량은 GAB 방정식으로 설명 할 수 있었으며, 적외선 건조 분말에서 0.005 g $H_2O/g$ dry solid, 천일 및 동결 건조 분말에서 0.019 g $H_2O/g$ dry solid를 각각 나타내었다. 이로써 건조방법은 복분자 분말의 갈변과 흡습 특성에 영향을 미치는 것으로 확인되었다.

Keywords

References

  1. Kim, H.C. and Lee, S.L. (1991) Comparison of functional effects of geni Rubus. Korean. J. Herbol., 6, 3-11
  2. Costantino, L., Albasini, A., Rasteli, G. and Benvenuti, S. (1992) Activity of polyphenolic crude extracts asscavengers of superoxide radicals and inhibitors of xanthine oxidase. Planta Med., 58, 342-345 https://doi.org/10.1055/s-2006-961481
  3. Kim, S.H., Chung, H.G., Jang, Y.S., Park, Y.K., Park, H.S. and Kim, S.C. (2005) Characteristics and screening of antioxidative activity for the fruit by Rubus coreanus Miq. clones. J. Korean For. Soc., 94, 11-15
  4. Park, J.H., Lee, H.S., Mun, H.C., Kim, D.H., Seong, N.S.,Jung, H.G., Bang, J.K. and Lee, H.Y. (2004) Effect of ultrasonification process on enhancement of immuno-stimulatory activity of Ephedra sinica stapf and Rubus coreanus Miq. Korean J. Biotechnol. Bioeng., 19, 113-117
  5. Lee, M.K., Lee, H.S., Choi, G.P., Oh, D.H., Kim. J.D.,Chang, Y.Y. and Lee, H.Y. (2003) Screening of biological activities of the extracts from Rubus coreanus Miq. Korean J. Med. Crop Sci., 11, 5-12
  6. Choi, J., Lee, K.T., Yun, S.Y., Ko, C.D., Jung, H.J. and Park, H.J. (2003) Antinociceptive and antiinflammatory effects of nigaichigoside F1 and 23-hydroxytormentic acid obtained from Rubus coreanus. Biol. Pharm. Bull., 26, 1436-1441 https://doi.org/10.1248/bpb.26.1436
  7. Chung, H.S., Hwang, S.H. and Youn, K.S. (2005) Extraction characteristics of Rubi Fructus in relation to drying methods and extraction solutions. Korean J. Food Preserv., 12, 436-441
  8. Mujumdar, A.S. and Menon, A.S. (1995) Drying of solids: principles, classification, and selection of dryers. In: Handbook of Industrial Drying, Mujumdar, A.S.(Editor), Marcel Dekker, New York, USA, p.1-39
  9. Krokida, M.K. and Maroulis, Z.B. (1997) Effect of drying method on shrinkage and porosity. Drying Technol., 10, 1145-1155
  10. Krokida, M.K., Maroulis, Z.B. and Saravacos, G.D. (2001) The effect of the method of drying on the colour of dehydrated products. Int. J. Food Sci. Technol., 36, 53-59 https://doi.org/10.1046/j.1365-2621.2001.00426.x
  11. Yang, C.S.T. and Atallah, W.A. (1985) Effect of four drying methods on the quality of immediate moisture lowbush blueberries. J. Food Sci., 50, 1233-1237 https://doi.org/10.1111/j.1365-2621.1985.tb10450.x
  12. Saravacos, G.D. (1967) Effect of the drying method on the water sorption of dehydrated apple and potato. J. Food Sci., 32, 81-84 https://doi.org/10.1111/j.1365-2621.1967.tb01963.x
  13. Krokida, M. and Maroulis, Z. (2000) Quality changes during drying of food materials. In: Drying Technologyin Agriculture and Food Sciences, Mujumdar, A.S.(Editor), Science Publishers, NH, USA, p.77-87
  14. Kim, H.K., Jo, K.S., Kang, T.S. and Shin, H.S. (1987) Browning and sorption characteristics of dried garlic flakes with relative humidity and storage temperature. Korean J. Food Sci. Technol., 19, 176-180
  15. Tsami, E., Maroulis, Z.B., Morunos-Kouris, D. and Saravacos, G.D. (1990) Water sorption isotherms of raisins, currants, figs, prunes and apricots. J. Food Sci., 55, 1594-1597 https://doi.org/10.1111/j.1365-2621.1990.tb03578.x
  16. Mclaughlin, C.P. and Magee, T.R.A. (1998) The determination of sorption isotherm and the isosteric heats of sorption for potatoes. J. Food Eng., 35, 267-280 https://doi.org/10.1016/S0260-8774(98)00025-9
  17. Sukumar, D., Hermavathy, J. and Bhat, K.K. (2002)Moisture sorption studies on onion powder. Food Chem., 78, 479-482
  18. Shin, H.K., Hwang, S.H. and Youn, K.S. (2003)Absorption characteristics and prediction model of ginger powder by different drying methods. Korean J. Food Sci. Technol., 35, 211-216
  19. Bradley, R.S. (1936) Polymolecular adsorbed films. Part I. The adsorption of argon on salt crystals at low temperatures and the determination of surface fields. J. Am. Chem. Soc., 77, 1467-1474
  20. Caurie, M. (1981) Derivation of full range moisture isotherms. In: Rockland, L.B. and Stewart, G.F. (Editor), Water Activity: Influences on Food Quality, Academic Press, New York, USA, p.63-87
  21. Halsey, G. (1948) Physical adsorption in non-uniform surfaces. J. Chem. Physi., 16, 931-937 https://doi.org/10.1063/1.1746689
  22. Henderson, S.M. (1952) A basic concept of equilibrium moisture. Agric. Eng., 33, 29-32
  23. Kuhn, I.J. (1964) A new theoretical analysis of adsorption phenomena. Introductory part: The characteristics expression of the main regular types of adsorption isotherms by a single simple equation. J. Colloid Sci., 19, 685-698 https://doi.org/10.1016/0095-8522(64)90076-5
  24. Oswin, C.R. (1946) The kinetics of package life. III. The isotherm. J. Soc. Chem.. Indus., 65, 419-421 https://doi.org/10.1002/jctb.5000651216
  25. Lomauro, C.J., Bakshi, A.S. and Labuza, T.P. (1985)Evaluation of food moisture sorption isotherm equations. Part I. Fruit, vegetable and meat products. LWT, 18, 111-117
  26. Brunauer, S., Emmett, P.H. and Teller, E. (1938)Adsorption of gases in multimolecular layers. J. Am.Chem. Soc., 60, 308-319
  27. Anderson, R. (1946) Modifications of the BET equation. J. Am. Chem. Soc., 68, 689-691
  28. Castaner, M., Gil, M. I., Ruiz, M. V. and Artes, F. (1999) Browning susceptibility of minimally processed Baby and Romaine lettuces. Eur. Food Res. Technol., 209, 52-56 https://doi.org/10.1007/s002170050456
  29. Chung, H.S., Hwang, S.H. and Youn, K.S. (2005)Physicochemical characteristics of Ponciri fructus in relation to drying treatment. Korean J. Food Preserv., 12, 449-454
  30. Rao, K.J., Dhas, P.H.A., Emerald, M.E., Ghosh, B.C.,Balasubramanyam, B.V. and Kulkarni, S. (2006)Moisture sorption characteristics of chhana podo at$5^{\circ}C$and $35^{\circ}C$ J. Food Eng., 76, 453-459 https://doi.org/10.1016/j.jfoodeng.2005.04.048
  31. Boquet, R., Chirife, J. and Iglesia, H.A. (1978) Equatins for fitting water sorption isotherms of foods. J. Food Technol., 13, 319-329 https://doi.org/10.1111/j.1365-2621.1978.tb00809.x
  32. Westgate, P., Lee, J.Y. and Ladisch, M.R. (1992)Modeling of equilibrium sorption of water vapor on starch materials. Trans. ASAE., 35, 213-219 https://doi.org/10.13031/2013.28590
  33. Iglesias, H.A. and Chirife, J. (1976) A model for describing the water sorption behavior of foods. J. Food Sci., 41, 984-992 https://doi.org/10.1111/j.1365-2621.1976.tb14373.x