Changes of Chemical Components during Fermentation of Pear Wine

배술 발효 과정 중 화학 성분의 변화

  • Lee, Ka-Soon (Geumsan Ginseng & Medicinal Crop Experiment Station, CNARES) ;
  • Park, Hae-Min (Department of Food Science and Technology, Chungnam National University) ;
  • Hong, Jong-Sook (Daejeon Agriculture Technology Center) ;
  • Lee, Gyu-Hee (Department of Food Science and Technology, Woosong University) ;
  • Oh, Man-Jin (Department of Food Science and Technology, Chungnam National University)
  • 이가순 (충남농업기술원 금산인삼약초시험장) ;
  • 박혜민 (충남대학교 식품공학과) ;
  • 홍종숙 (대전광역시 농업기술센터) ;
  • 이규희 (우송대학교 식품학부) ;
  • 오만진 (충남대학교 식품공학과)
  • Published : 2009.12.30

Abstract

We used pears to manufacture wine, and analyzed changes in pH, acidity and ethanol and sugar content during fermentation. Pear wine with added ginger (to improve quality) did not differ from ginger-free wine in pH or acidity level. The ethanol content of pear wine was the highest (13.0%, v/v) inpear wine with 0.1% (w/v) added ginger compared to pear wine with no ginger, and sensory tests examining taste and color yielded the highest scores for pear wine with 0.2% (w/v) ginger. To assess storage stability, pear wine was treated for 30 minutes at $55^{\circ}C$, $60^{\circ}C$, $65^{\circ}C$, or $70^{\circ}C$. Unheated pear wine showed rapid changes in pH and acidity level after 30 days of storage, whereas pear wine treated for 30 minutes at $60^{\circ}C$ did not show such changes. Total organic acid levels in pear wine increased by 0.71% and 0.89% (v/v), respectively. The free sugar level in pear wine decreased from 12.05% to 3.13% (w/v). Turning to phenolic compounds, caffeic acid, catechin, and epicatechin contents in pears were 1.64, 1.40, and 0.23 mg/100mL, respectively, with diverse compositions. Caffeic acid levels in pear wine decreased sharply to 0.12 mg/100 mL upon fermentation, whereas free catechin inpear wine increased to 1.16 mg/100 mL compared with 0.28 mg/100 mL in pears. Free arbutin increased from 8.34 mg/100 mL in pears to 10.39 mg/100 mL in pear wine. The free amino acid content of pear wine was 118.5 g/100 mL, but the levels of serine, alanine, glutamic acid, and aspartic acid decreased sharply upon fermentation, with corresponding increases in tyrosine, GABA, lysine, and arginine.

배술 제조 과정 중 pH, 산도, 에탄올 및 당도의 변화와 기호도를 조사하고 배 원료와 발효 배술의 유리아미노산, 유기산 및 페놀성 성분 등을 분석하였다. 배술의 관능을 개선하기 위하여 생강 첨가량을 달리하여 배술을 제조하였을 때 생강 첨가량에 따른 pH와 산도는 차이가 없었다. 에탄올 함량은 무 첨가구에 비하여 생강 0.1% 첨가구가 13%로 높게 나타났으며 맛, 색 및, 향의 관능검사는 생강 0.2% 첨가구에서 가장 높았다. 배술을 55, 60, 65 및 $70^{\circ}C$의 온도에서 각각 30분간 열처리 한 후 $30^{\circ}C$에서 60일간 저장하면서 pH와 산도의 변화를 검토하여 저장성을 검토한 결과 열처리하지 않은 배술은 저장 30일 이후부터 pH와 산도는 급격히 변화하였고 가장 변화가 적었던 처리구는 $60^{\circ}C$에서 30분간 열 처리구 가장 변화가 적었다. 유기산의 함량은 원료 배가 0.71%, 배술이 0.89%로 증가하였으며, 유리당은 발효에 의하여 12.05%에서 3.13%로 감소하였다. Phenolic compound는 원료 배중에 caffeic acid, catechin 및 epicatechin이 각각 1.64, 1.4 및 0.23 mg/100 mL로서 결합형으로 다량 존재하고 있었으며, 배술의 caffeic acid는 급격히 감소하여 0.12 mg/100 mL이었고, 유리형의 catechin은 0.28에서 1.16 mg/100 mL로 크게 증가하였다. 유리형 arbutin은 배 8.34 mg/100 mL, 배술 10.39 mg/100 mL로 증가하였다. 배의 유리 아미노산은 aspartic acid가 $118.5\;{\mu}g/100mL$로 가장 높았으며, serine, alanine, glutamic acid 순이었고, 배술의 aspartic acid는 급격히 감소하였으나 tyrosine, GABA, lysine, arginine은 크게 증가하였다.

Keywords

References

  1. Amerine M. A. and Ough C. S. (1980) Methods for analysis of musts and wines. John Willey & Sons. New York. 1-177
  2. Shim K. H., Sung N. K. and Choi J. S. (1988) Changes in major components during preparation of apricot wine. J. Inst. Agric. Res. Util. Gyeongsang Natl. Univ., 22, 139-147
  3. Park J. C., Lee J. I. and Ahn S. D. (1989) Study on the constituents in the fruit of Chaenomeles sinensis Koehne. Korean J. Pharmacol., 20, 10-12
  4. Lee D. H., Kim J. H., Kim N. M., Choi J. S. and Lee J. S. (2002) Physiological functionalities of Chinese quince wine and liquors. Kor. J. Biotechnol. Bioeng., 17, 266-270
  5. Kim H. J., Lee J. C., Lee G. S., Jeon B. S., Kim N. M. and Lee J. S. (2002) Manufacture and physiological functionalities of traditional ginseng liquor. J. Ginseng Res., 6, 74-78
  6. Yu J. S. and Bai D. H. (2004) Pear wine fermentation fortified with the extract of Acanthopanax sessiliforum. Dankuk Univ. J. New Material Thesis, 2, 341-350
  7. Kim J. H., Lee S. H., Kim N. M., Choi S. Y., Yoo J. Y. and Lee J. S. (2000) Manufacture and physiological functionality of korean traditional liquor by using Dandellion (Tarax-acum platycarpum). Korean. J. Appl. Microbiol. Biotechnol., 28, 367-371
  8. Korean Alcoholic Beverage Association. (1996), Alcoholic Beverage 16, 60-81
  9. Zhang X., Lee F. Z. and Eun J. B. (2007) Changes of phenolic compounds and pectin in asian pear fruit during growth. Korean J. Food Sci. Technol., 39, 7-13
  10. Kim J. H. (1998) New cultivation of pear. Ohsung Public, Seoul, Korea. p.25-79
  11. Zhang X., Na C. S., Kim J. S., Lee F. Z. and Eun J. B. (2003) Changes in dietary fiber content of flesh and peel in three cultivars of Asian pears during growth. Food Sci. Biotechnol., 12, 358-364
  12. Zhang Y. B., Choi H. S., Han H. S., Park J. H., Bae J..H., Seung T..S., An B. J., Kim H.G. and Choi C. (2003) Chemical structure of polyphenol isolated from korean pear (Pyrus pyrifolia Nakai). Korean J. Food Sci. Technol., 35, 959-967
  13. Carlos E., Mercedes M., Remon V., Jose T. and Francisco G. C. (1997) Monophenolase activity of polyphenol oxidase from blanquilla pear. Phytochem., 44, 17-22 https://doi.org/10.1016/S0031-9422(96)00488-8
  14. Hwang I. G., Woo K. S., Kim T. M., Kim D. J., Yang M. H. and Jeong H. S. (2006) Change of physiochemical characteristics of korean pear (Pyrus pyrifolia Nakai) juice with heat treatment condition. Korean J. Food Sci. Technol., 38, 342-347
  15. Korea Customs Service. (2007) The annuals of trade statistics. Available online: http://www.customs.go.kr
  16. Ahn B. H. (1994) Review of Korean traditional rice wine. Food Ind. 7, 42-47
  17. Oh M. J. (2009) Brewing technology for manufacturing of Nosanchun traditional rice and pear wine. Report, Daejeon Metropolitan City
  18. Michack, L. R., Sebastiano C. C., Brando J. and Charles M. S. (1981) Analysis of simple sugar and sorbitol in fruit by high performance liquid chromatography. J Agric. Food Chem., 29, 14-20
  19. Krygier K., Sosulski F. and Lawrence H. (1982) Free esterified and insoluble-bound phenolic acids. 1. Extraction and purification procedure. J. Agric. Food Chem., 330, 330-334
  20. Sung C. K. and Cho S. H. (1992) The purification and characteristics of tyrosinase from ginger (Zingiber officinale Rosc). Biochem. Mol. Biol. Rep. 25, 564-572
  21. Kim E. J. and Ahn M. S. (1993) Antioxidative effect of ginger extracts. Korean J. Food Cookery Sci., 9, 38-43
  22. Cook J. L. (1995) Antioxidative effect of ethanol extract of ginger on mackerel pike (Coloabis saira) flesh. Korean J. Oil Chem., 12, 43-46
  23. Li K. and Xu E. (2008) The role and the mechanism of gamma-aminobutyric acid during central nervous system development. Neurosci. Bull., 24, 195-200 https://doi.org/10.1007/s12264-008-0109-3
  24. Lee S. R. and Shin H. S. (1988) The New Food Chemisry. Shinkwang Publ. Seoul, Korea p.139
  25. National Rural Living Science Institute. (2006) Food Composition Table. RDA, Korea, p.130