DOI QR코드

DOI QR Code

Myocardial Protection of Contractile Function After Global Ischemia by Compound K in the Isolated Heart

  • Kim, Jong-Hoon (Department of Veterinary Physiology, College of Veterinary Medicine, Chonbuk National University, Biosafety Research Institute)
  • Published : 2009.12.31

Abstract

Ginsenosides are among the most well-known traditional herbal medicines frequently used for the treatment of cardiovascular symptoms in South Korea. The anti-ischemic effects of compound K (CK), a metabolite of ginsenoside Rb1, on ischemia-induced isolated rat hearts were investigated through the analyses of the changes in the hemodynamics (blood pressure, aortic flow, coronary flow, and cardiac output) and the measurement of the infarct region. The subjects in this study were divided into four groups: the normal control, the CK-alone group, the ischemia-induced group without any treatment, and the ischemia-induced group treated with CK. No significant differences in perfusion pressure, aortic flow, coronary flow, and cardiac output were found between the groups before ischemia was induced. The oxygen and buffer supply was stopped for 30 min to induce ischemia 60 min after reperfusion in the isolated rat hearts, and the CK was administered 5 min before ischemia induction. The CK treatment significantly prevented decreases in perfusion pressure, aortic flow, coronary flow, and cardiac output under ischemic conditions. In addition, the hemodynamics (except for the heart rate) of the group treated with CK significantly recovered 60 min after reperfusion, unlike in the control group. CK significantly limited the infarct. These results suggest that CK treatment has distinct anti-ischemic effects in an exvivo model of an ischemia-reperfusion-induced rat heart.

Keywords

References

  1. Sohn ES, Huh BY, Park SC, Park CW, Kim HJ. The effect of ginseng on blood pressure in spontaneous hypertensive rat and essential hypertension. Proceedings of the 3rd International Ginseng Symposium. Korean Gin Res Institute, Seoul, Korea. 1-3 (1980)
  2. Kim ND, Kang SY, Schini VB. Ginsenosides evoke endothelium- dependent vascular relaxation in rat aorta. Gen Pharmacol. 25: 1071-1077 (1994) https://doi.org/10.1016/0306-3623(94)90121-X
  3. Shibata S, Tanaka O, Ando T, Sado M, Tsushima S, Ohsawa T. Chemial studies on oriental plant drugs. XIV. Protopanaxadiol, a genuine sapogenin of ginseng saponins. Chem Pharm Bull. 14: 595-600 (1966) https://doi.org/10.1248/cpb.14.595
  4. Toda N, Ayajiki K, Fujioka H, Okamura T. Ginsenoside potentiates NO-mediated neurogenic vasodilatation of monkey cerebral arteries. J Ethnopharmacol. 76: 109-113 (2001). https://doi.org/10.1016/S0378-8741(01)00217-3
  5. Kim ND, Kang SY, Kim MJ, Park JH, Schini-Kerth VB. The ginsenoside $Rg_3$ evokes endothelium-independent relaxation in rat aorti rings:role of $K^+$ channels. Eur J Pharmacol. 367: 51-57 (1999a) https://doi.org/10.1016/S0014-2999(98)00899-1
  6. Kim ND, Kang SY, Park JH, Schini-Kerth VB. Ginsenoside $Rg_3$ mediates endothelium-dependent relaxation in response to ginsenosides in rat aorta: role of $K^+$ channels. Eur J Pharmacol. 367: 41-49 (1999b) https://doi.org/10.1016/S0014-2999(98)00898-X
  7. Shen AC, Jennings RB. Kinetics of calcium accumulation in acute myocardial ischemic injury. Am J Pathol. 67: 441-452 (1972)
  8. Shen AC, Jennings RB. Myocardial calcium and magnesium in acute ischemic injury. Am. J. Pathol. 67: 417-440 (1972)
  9. Bourdillon PD, Poole-Wilson PA. Effects of ischaemia and reperfusion on calcium exchange and mechanical function in isolated rabbit myocardium. Cardiovasc Res. 15: 121-130 (1981) https://doi.org/10.1093/cvr/15.3.121
  10. An J, Varadarajan SG, Camara A. Blocking Na+/H+ exchange reduces $[Na^+]_i$ and $[Ca_{2+}]_i$ load after ischemia and improves function in intact hearts. Am J Physiol. 281: H2396-H2409 (2001)
  11. Sun HY, Wang NP, Halkos ME. Involvement of $Na^+/H^+$ exchanger in hypoxia/re-oxygenation-induced neonatal rat cardiomyocyte apoptosis. Eur J Pharmacol. 486: 121-131 (2004) https://doi.org/10.1016/j.ejphar.2003.12.016
  12. Micheal PH, Meuter K, Schasfer C. Cellular mechanisms of ischemia-reperfusion injury. Ann Thorac Surg. 75: S644- S648 (2003) https://doi.org/10.1016/S0003-4975(02)04686-6
  13. Maulik N, Yoshida T, Das DK. Oxidative stress developed during the reperfusion of ischemic myocardium induces apoptosis. Free Radiac Biol Med. 24: 869-875 (1998) https://doi.org/10.1016/S0891-5849(97)00388-2
  14. Sun J, Tan BK, Huang SH, Whiteman M, Xhu YZ. Effects of natural products on ischemic heart diseases and cardiovascular system. Acta Pharmacol Sin. 23: 1142-1151 (2002)
  15. Lee JH, Jeong SM, Kim JH, Lee BH, Yoon IS, Lee JH, Choi SH, Lee SM, Park YS, Lee JH, Kim SS, Kim HC, Lee BY, Nah SY. Effects of Ginsenosides and Their Metabolites on Voltage dependent $Ca_{2+}$ Channel Subtypes. Mol Cells 21 (No. 1): 52-62 (2006)
  16. Li XS, Urriuda Y, Wang QD, Norlander R, Sjoouist PO, Pernow J. Role of L-arginine in preventing myocardial and endothelial injury following ischaemia/ reperfusion in the rat isolated heart. Acta Physiol Scand. 156: 37-44 (1996) https://doi.org/10.1046/j.1365-201X.1996.432152000.x
  17. Zhao JL, Yang YJ, Chen JL, Kang LM, Wu Y, Gao RL. Nicorandil reduces myocardial no-reflow by protection of endothelial function via the activation of KATP channel. Clin Chim Acta. 374: 100-105 (2006) https://doi.org/10.1016/j.cca.2006.05.039
  18. Yu XC, Wu S, Wang GY, Shan J, Wong TM, Chen CF, Pang KT. Cardiac effects of the extract and active components of radix stephaniae tetrandrae. II. Myocardial infarct, arrhythmias, coronary arterial flow and heart rate in the isolated per fused rat heart. Life Sci. 68: 2863-2872 (2001) https://doi.org/10.1016/S0024-3205(01)01067-0
  19. Galagudza M, Kurapeev D, Minasian S, Valen G, Vaage J. Ischemic postconditioning: brief ischemia during reperfusion converts persistent ventricular fibrillation into regular rhythm. Eur J Cardiothorac Surg. 25: 1006-1010 (2004) https://doi.org/10.1016/j.ejcts.2004.02.003
  20. Asano G, Takashi E, Ishiwata T, Onda M, Yokoyama M, Naito Z, Ashraf M, Sugisaki Y. Pathogenesis and protection of ischemia and reperfusion injury in myocardium. J Nippon Med Sch. 70: 384-392 (2003) https://doi.org/10.1272/jnms.70.384
  21. Ferrari R, Alfieri O, Curello S, Ceconi C, Cargnoni A, Marzollo P, Pardini A, Caradonna E, Visioli O. Occurrence of oxidative stress during reperfusion of the human heart. Circulation 81: 201-211 (1990) https://doi.org/10.1161/01.CIR.81.1.201
  22. Temsah RM, Netticadan T, Chapman D, Takeda S, Mochizuki S, Dhalla NS. Alterations in sarcoplasmic reticulum function and gene expression in ischemic-reperfused rat heart. Am J Physiol. 277: H584-H594 (1999)
  23. Bolli R, Marbán E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev. 29: 610-636 (1999)
  24. Sharikabad MN, Hagelin EM, Hagberg IA, Lyberg T, Brors O. Effect of calcium on reactive oxygen species in isolated rat cardiomyocytes during hypoxia and reoxygenation. J Mol Cell Cardiol. 32: 441-452 (2000) https://doi.org/10.1006/jmcc.1999.1092
  25. Wang YG, Benedict WJ, Huser J, Samarel AM, Blatter LA, Lipsius SL. Brief rapid pacing depresses contractile function via Ca(2+)/PKC-dependent signaling in cat ventricular myocytes. Am J Physiol Heart Circ Physiol. 280: H90-H98 (2001)
  26. Liao P, Wang SQ, Wang S, Zheng M, Zheng M, Zhang SJ, Cheng H, Wang Y, Xiao RP. p38 mitogen-activated protein kinase mediates a negative inotropic effect in cardiac myocytes. Circ Res. 90: 190-196 (2002) https://doi.org/10.1161/hh0202.104220
  27. Kaneko M, Beamish RE, Dhalla NS. Depression of heart sarcolemmal $Ca_{2+}$ -pump activity by oxygen free radicals. Am J Physiol. 256: H368-H374 (1989a)
  28. Kaneko M, Elimban V, Dhalla NS. Mechanism for depression of heart sarcolemmal $Ca_{2+}$ pump by oxygen free radicals. Am J Physiol. 257: H804-H811 (1989b)
  29. Jiang Y, Zhong G, Shao C, Yue G. $Ca_{2+}$ channel blocking effect of panaxadiol saponins and panaxatriol saponins of cultured cardiac cells. Zhongguo Zhong Yao Za Zhi. 192 Mar 17(3): 172-173 (1992)
  30. Zhong G, Jiang Y. Calcium channel blockage and anti-freeradical actions of ginsenosides. Chin Med J (Engl). Jan 110(1): 28-29 (1997)
  31. Nah S, Park HJ, McCleskey EW. A trace component of ginseng that inhibits $Ca_{2+}$ channels through a pertussis toxinsensitive G protein. Proc Natl Acad Sci. 92: 8739-8743 (1995) https://doi.org/10.1073/pnas.92.19.8739
  32. Kim HS, Lee JH, Koo YS, Nah SY. Effects of ginsenosides on $Ca_{2+}$ channels and membrane capacitance in rat adrenal chromaffin cells. Br Res Bull. 46: 245-251 (1998a) https://doi.org/10.1016/S0361-9230(98)00014-8
  33. Rhim H, Kim H, Lee DY, Oh TH, Nah SY. Ginseng and ginsenoside $Rg_3$, a newly identified active ingredient of ginseng, modulate $Ca_{2+}$ channel currents in rat sensory neurons. Eur J Pharmacol. 436: 151-158 (2002) https://doi.org/10.1016/S0014-2999(01)01613-2
  34. Nah SY, McCleskey EW. Ginseng root extract inhibits calcium channels in rat sensory neurons through a similar path, but different receptor, as type opioids. J Ethnopharmacol. 42: 45-51 (1994) https://doi.org/10.1016/0378-8741(94)90022-1
  35. Chu GX, Chen X. Anti-lipid peroxidation and protection of ginsenosides against cerebral ischemia-reperfusion injury of rats. Acta Pharma Sin. 11: 119-123 (1990)
  36. Chu GX, Chen X. Protective effect of ginsenosides on acute cerebral ischemia-reperfusion injury of rats. Cha J Pharmacol Toxicol. 3: 18-23 (1989)
  37. Kim ND, Kang SY, Schini VB. Ginsenosides evoke endothelium- dependent vascular relaxation in rat aorta. Gen Pharmacol. Oct 25(6): 1071-1077 (1994) https://doi.org/10.1016/0306-3623(94)90121-X
  38. Toda N, Ayajiki K, Fujioka H, Okamura T. Ginsenoside potentiates NO-mediated neurogenic vasodilatation of monkey cerebral arteries. J Ethnopharmacol. Jun 76(1): 109-113 (2001) https://doi.org/10.1016/S0378-8741(01)00217-3