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Abstract
An alternative way of constructing ancestral graphs, 
which is different from the coalescent-based approach, 
is proposed using population linkage disequilibrium (LD) 
data. The main difference from the existing method is 
the construction of the ancestral graphs based on var-
iants instead of individual sequences. Therefore, the key 
of the proposed method is to use the order of allele 
ages in the graphs. Distinct from the previous age-esti-
mation methods, allele ages are estimated from full hap-
lotype information by examining the number of gen-
erations from the initial complete LD to the current de-
cayed state for each two variants depending on the di-
rection of LD decay between variants. Using a simple 
algorithmic procedure, an ancestral graph can be de-
rived from the expected allele ages and current LD de-
cay status. This method is different in many ways from 
previous methods, and, with further improvement, it 
might be a good replacement for the current appro-
aches.

Keywords: allele age, ancestral graph, haplotypes, link-
age disequilibrium, recombination

Introduction
The evolution of the human genome is one of the major 
interests in biological research. Population genetics has 
contributed a lot to our understanding of the evolu-
tionary process (Crow and Kimura, 1970; Ewens, 2004; 
Hartl and Clark, 2007; Kimura and Ohta, 1971; Lynch 
and Walsh, 1998; Weir, 1996), especially through studies 
on gene genealogies using coalescence of individual se-
quences (Hudson, 1990; Rosenberg and Nordborg, 
2002). The coalescent approach is a way of reconstruct-

ing ancestral history, in which mathematical tractability 
can provide easy incorporation of mutation and re-
combination in the reconstruction of ancestral histories 
(Nordborg, 2001). This method is mainly used to infer 
the population genetic parameters rather than infer the 
actual ancestral history of the genome due to its proba-
bilistic properties. Also, because of its potential for cap-
turing disease variants using population data, the 
fine-mapping method using a direct or indirect coa-
lescent approach has been developed (Larribe et al., 
2002; Minichiello and Durbin, 2006; Molitor et al., 2003a; 
Molitor et al., 2003b; Molitor et al., 2005; Rannala and 
Reeve, 2001; Rannala and Slatkin, 1998; Reeve and 
Rannala, 2002; Zollner and Pritchard, 2005; Zollner et 
al., 2005). 
  In the inference of gene genealogies using coa-
lescence, the incorporation of recombination in the coa-
lescent process seems simple in that it only adds two 
ancestors to the graph. However, the actual con-
struction of the ancestral recombination graph is ex-
tremely challenging (McVean and Cardin, 2005). It 
should be noted that frequent past recombination 
events over a large sequence imply multiple most recent 
common ancestors (MRCA), since recombination can 
add more ancestors than reduce ancestors by 
coalescence. In addition to the problems with in-
corporating recombination, the coalescent approach 
deals with individual sequences, which are different from 
the genotype data that we usually have. Therefore, in 
the coalescent approach, the stochastic inferences us-
ing genotype data involve additional assumptions or 
constraints (Zollner and Pritchard, 2005). This problem 
continues when using sequenced data because the po-
sitions of mutation sites are given. 
  In order to find a possible future remedy for the cur-
rent approaches and obtain more descriptive analyses 
from actual ancestral graphs instead of probability dis-
tributions of graphs, an alternative way of constructing 
ancestral graphs that avoids the multiple MRCA, as well 
as unnatural constraints, is proposed in this study. 
Instead of constructing the genealogies by coalescence 
of each individual sequence in a backward direction, the 
focus is on the emerging order of variants in the ances-
tral history of genetic data. By concentrating on the var-
iants themselves and constructing the graph in a for-
ward direction, multiple MRCAs are avoidable, naturally 
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representing only one ancestral haplotype. The con-
structed ancestral graph exhibits only “observable” mu-
tations and recombinations, thereby eliminating the un-
naturally constrained mutation and unobserved recombi-
nation events. The proposed method is faithful to the 
observed data in constructing the past genealogy by re-
ducing parameters that are unknown and not imperative. 
  In the proposed method, the estimation of allele age 
is critical for constructing the ancestral graph. Classically, 
allele ages are estimated from intra-allelic variability or 
allele frequency, considering population factors such as 
natural selection, genetic drift, mutation, and gene flow 
(Slatkin and Rannala, 2000). Since allele frequencies can 
be affected by unknown population factors, the exact 
measure of allele age is quite difficult to determine in 
most cases. The estimation of allele age from the linked 
markers can be distinguished by two major approaches 
(Rannala and Bertorelle, 2001), i.e., a phylogenetic ap-
proach with a direct age inference from the root of the 
constructed tree and the population genetic approach 
that relies on models of demography, mutation, and 
recombination. The phylogenetic method does not con-
sider recombination, but population genetic approaches 
may consider both mutation and recombination pro-
cesses. 
  In population genetic approaches with recombination, 
the basic concept of using recombination in age estima-
tion is the moment estimator of linkage disequilibrium 
(LD) decay (Slatkin and Rannala, 2000). For better esti-
mates with multiple-linked marker loci, parametric stat-
istical methods that incorporate demographic parame-
ters have been developed with consideration of the 
gene tree (Rannala and Bertorelle, 2001). There has 
been an improvement in estimating allele ages using the 
approximation of coalescent approaches considering 
both allele frequency and LD (Rannala and Reeve, 2003; 
Slatkin, 2008). Relying on stochastic processes, these 
approaches are designed mainly for estimating the age 
of low-frequency disease mutations in conjunction with 
finding the locations of the disease mutations or for 
jointly estimating low-frequency allele age and selection 
intensity. Since the focus of this study is to derive the 
ancestral graph from the allele age of each variant, a 
new method for finding at least the relative allele ages 
of common variants is necessary.
  To solve the problem as simply as possible, the dem-
ographic and population genetic parameters are consid-
ered to be minimal. Thus, the LD decay at linked mark-
ers is the only measurement in the age estimation of 
this study, which is partially similar to the methods of 
the moment estimator using LD (Slatkin and Rannala, 
2000). In contrast with the moment estimator of LD, the 
recursive expression for LD decay is used for each age 

in consideration of the initial LD state, and a useful al-
gorithmic procedure is developed for the mean allele 
age. Using the estimated ages, the ancestral graph can 
be derived. The basic idea for constructing the ancestral 
graph is to add new incoming alleles to the original 
haplotypes depending on the order of allele age. In this 
method, the initial LD state between the emerging var-
iant and the existing variant(s) is critical in determining 
the node of the ancestral graph. To test this new meth-
od, a coalescent-based simulation sample and real data 
are examined in order to construct the ancestral graph. 

Methods

Allele age estimation

For two biallelic single nucleotide polymorphisms (SNPs), 
there is a maximum of four possible haplotypes, and 
they decay together in a comprehensive manner as in-
dicated in Equation (1). When the major alleles of each 
variant are “1” and the minor alleles are “2,” the nota-
tions p1, p2, p3, and p4 indicate the frequencies of hap-
lotypes 11, 12, 21, and 22, respectively. If R is the re-
combination fraction between two biallelic loci (0＜R≤
0.5), the haplotype frequencies (pi,t ) of the current gen-
eration are expressed as the haplotype frequencies at 
the previous time t-1 in the Wright-Fisher model with 
the assumptions of random mating and discrete non-
overlapping generations. The decay generation, counted 
from Equation (1), can be used as the estimation of the 
relative allele age. This method can be applicable to any 
SNPs, but needs some corrections when applying to 
other types of polymorphisms such as short tandem re-
peats (STR).

  pi,t =pi,t-1＋ηiR (p2,t-1p3,5-1−p1,t-1p4,t-1) i=1, 2, 3, 
  and 4 η1=η4=1 η2=η3=−1  (1)

  LD between two variants decays after the emergence 
of the younger variant, which is indicated in Fig. 1 as 
dashed lines for examples. In Fig. 1, 11 → 21 involves 
mutation at the first locus (from allele 1 to 2), and this 
happened before the mutation at the second locus. 21
→22 in (a) and 11 → 12 in (b) involves mutation at the 
second locus. Since it is just an example figure, the 
emergence times of the younger variants are arbitrary 
for both (a) and (b) in Fig. 1. LD decay occurs in only 
one direction towards linkage equilibrium (LE) with no 
reversal. The recombination between two different hap-
lotypes generates an existing haplotype (Fig. 1, 21 in (a) 
or 11 in (b)) and a new recombinant haplotype (Fig. 1, 
12 in (a) or 22 in (b)). The LD decay state depends on 
the current frequencies of four possible haplotypes, 
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Fig. 1. Examples of ancestral history between two variants.

11→21 involves mutation at the first locus (from allele 1 to

2), and 21→22 in (A) and 11→12 in (B) involves mutation at

the second locus. The time when mutation occurs is arbi-

trary in this figure.

which can be expressed by the major haplotype fre-
quency when the allele frequencies are fixed. The fre-
quency range of the major haplotype is limited, depend-
ing on the minor allele frequencies (Park, 2007). The 
current major haplotype frequency indicates one of the 
middle states between LE and complete LD. Since the 
allele age can be different depending on the initial state 
of LD ((a) or (b) in Fig. 1), determination of that state is 
important for allele age estimation. As the major hap-
lotype frequency approaches the minimum, the LD de-
cay state changes from the state (b) in Fig. 1 to the 
complete LE. In the opposite case, the initial state of LD 
decay changes from the state (a) in Fig. 1 to the com-
plete LE. 
  The allele age can be calculated by subtracting the 
complete decay generation of the current LD state from 
the complete decay generation of the initial state. 
Instead of direct generation counts from the initial to 
current LD decay state, this method can provide a more 
accurate stopping point by avoiding pass or premature 
determination of the current decay state. Without drift, 
haplotype frequencies are changed only in the direction 
of LE until reaching LE. Using equation (1), the number 
of generations from the initial complete LD to the cur-
rent state can be calculated for every two variants.
  To reduce the usage of unknown parameters, the as-
sumptions include fixed allele frequencies, fixed re-
combination rates, an infinite population size, no re-
current mutation, and no drift. Under these conditions, 
the LD decay between polymorphisms is dependent 
solely on the allele age. This method is basically similar 
to the methods of moment estimator in allele age esti-
mation (Slatkin and Rannala, 2000), but it is much en-
hanced, based on the LD information from multiple 
linked variants and the usage of all observable 
haplotypes. The method serves as an efficient algo-
rithmic procedure in consideration of the initial hap-
lotype states. In case of LE in this method, the allele 
age is older than the generation that reaches linkage 

equilibrium, and complete LD means zero generation of 
the allele age. The recombination rate is assumed to be 
1×10−8 per base pair (Strachan and Read, 2000) and 
is adjusted for each pair of variants, depending on the 
distance between variants.
  The age obtained from the haplotypes of two variants 
is for only one of the variants, more precisely, the 
youngest allele among four possible alleles in two 
variants. In this method, the estimated age is actually 
for the allele with the lowest frequency due to the as-
sumption of fixed allele frequencies and their initial 
states, which are derived from their haplotype frequen-
cies. Consequently, variants with low frequencies have 
more data. The most frequent variant does not have any 
data remaining, and it is, consequently, the oldest one. 
If there are a total of k variants, there is a maximum of 
k-1 ages for a variant (maximum, k-1 ages, for the low-
est frequency variant). For a variant’s age, the mean 
can be the descent estimate of the variant age. To re-
duce the variance, the youngest one is removed from 
further age estimation of the other variants at each 
stage. The procedures are listed below:
  (1) Calculate ages depending on their initial LD state 

from all possible LD combinations for k variants. 
  (2) Among ages of k-1 combinations for each variant, 

take the age into account only if the minor allele 
frequency of the target variant is less than the 
coupled variant and then find the mean for each 
variant.

  (3) Find the youngest variant from the mean allele 
ages and remove all the data of other variants 
generated with the youngest variant. Return to the 
second step and repeat until the last variant 
remains.

  As indicated, from the simple algorithmic procedure, 
the expected mean allele ages are assigned to each 
variant. For calculating the LD decay generation from 
the initial and current states, C++ was used for fast 
calculation. The stopping point for the age calculation is 
when the differences become lower than 10−5 between 
frequencies at time t and frequencies at complete LE. 
The algorithm for finding relative allele ages uses R.

Constructing the ancestral graph

The ancestral graph can be derived from the relative al-
lele ages. This ancestral graph method is more oriented 
to the variant’s origin than to individual sequences, dif-
ferent from the basic coalescent approach with 
mutation. In this method, the original haplotype, similar 
to MRCA, the root, consists of the original alleles of 
each variant. Basically, the role of relative allele age in 
constructing the ancestral graph is to order the emer-
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Fig. 2. Ancestral graph of three example variants using al-

lele ages and LD decay statuses. “B” is the youngest and

“A” is the oldest allele. “a”, “b” and “c” indicate the mu-

tated variants of “A”, “B” and “C”, respectively.

Table 1. Order of age and ancestral state of the hap-

lotypes from variants, A, B, and C. The ancestral states, 

(a) and (b), indicate the states of Fig. 1a and Fig. 1b

Age With With With
Variant

order* variant A variant B variant C

A 3 NA a a

B 1 - NA b

C 2 - - NA

*From the youngest. 

NA, not applicable.

gence of variants and interpret proper spacing between 
nodes in the graph. The basic idea for constructing the 
ancestral graph is to add new mutations to the original 
haplotypes depending on the order and the initial state 
between variants. The original state between variants is 
very important in determining the original haplotype from 
which a new variant emerges. Therefore, the ancestral 
graph is obtained from the information of the allele ages 
and the initial LD state between variants. 
  A case of three variants, A, B, and C, is described 
here as an example. The order from the youngest to the 
oldest is B, C, and A. The LD decay status of each is 
determined as indicated in Table 1, in which the emer-
gence status of mutation is indicated as (a) or (b). The 
status (a) and (b) indicate the statuses of Fig. 1a and 
Fig. 1b. Starting from the oldest variant, A, a mutation 
arises from the original haplotype ABC. At this time, the 
variants B or C have not emerged yet, and all B and 
C variants are the ancestral states “B” and “C” instead 
of the mutated ones “b” and “c.” Next, the emergence 
of “c” allele is from the haplotype “aBC,” since the ini-
tial LD decay status between A and C is (a). Therefore, 
there are three haplotypes, ABC, aBC, and aBc in this 
generation. For the youngest “b” allele, the LD decay 
status is (a) with A variant and (b) with C variant as 
shown in Table 1, which means that the b allele arises 
from the aBC haplotype, as shown in Fig. 2. 
  In a more complicated situation involving recombina-
tion, the target haplotype, in which a new mutation 
needs to arise, may not exist in this basic ancestral 
graph. Recombination between proper haplotypes can 
generate the target haplotype, and the recombinant 
haplotypes will remain after that. The time of recombi-
nation is between the time when the recombining hap-
lotypes are generated and the time when the new var-
iant comes out. The final ancestral graph derived from 
the allele age and the LD decay statuses of this exam-
ple is indicated in Fig. 2. If there are haplotypes not 
generated from the ancestral graph, proper recombina-
tion events can be incorporated to generate the 

haplotypes.
  A summary of the procedure for constructing the an-
cestral graph using R is presented below:
  (1) Find the initial states between variants and the or-

der of variants’ ages.
  (2) From the existing node(s), generate a new node of 

the oldest variant among the remaining variants, 
considering the initial states with the previously 
emerged variants. If necessary, generate a proper 
node by recombination and a new node from the 
newly generated proper node.

  (3) Repeat step (2) until the final node is generated.
  (4) Compare the generated haplotypes to the current 

existing haplotypes and incorporate recombination 
using most likely combinations of haplotypes de-
pending on the haplotype frequencies and the 
number of recombination (i.e. single recombination 
is preferred). The timing of recombination events 
is right after the recombining haplotypes are ge-
nerated.

  This method is rather descriptive compared to the co-
alescent method. The most important difference is that 
the proposed method focuses on the variant itself, and 
the individual sequences are not considered in the basic 
framework. The underlying assumption is that no re-
current mutation occurs, implying that all the same al-
leles are considered to be identical by descent (IBD), 
which is reasonable in most cases considering esti-
mated mutation rates and the theoretical result in pop-
ulation genetics (Crow and Kimura, 1970; Nachman and 
Crowell, 2000). One significant advantage of this method 
is the potential of the direct inference of ancestral muta-
tion and recombination events. Further study would im-
prove this method by estimating the accurate timing of 
recombination and the precise estimation of mean allele 
ages. 

Sample description

To test the proposed ancestral graph method, a sample 
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Fig. 3. Summary of the selected region (HapMap data of 

TP53 region in Chromosome 17) for analysis from Haplo-

view Version 4.0. The linkage disequilibrium (D’) between 

selected SNPs is indicated in the bottom. 

Table 2. Summary table of variants used in constructing ancestral graph from the real data of HapMap TP53 region

Variant No. in Fig. 3 Name Position HWE p-value %Geno MAF Alleles*

1 2 rs1642763 7498144 0.4247 100 0.406 G:A

2 5 rs1641511 7500402 0.4267 98.9 0.421 T:C

3 6 rs1050533 7501019 0.7523 98.9 0.461 T:C

4 8 rs1050541 7501560 0.0903 100 0.378 T:G

5 9 rs1641510 7502221 0.0821 100 0.417 T:C

6 24 rs12951053 7518132 0.3879 100 0.361 A:C

7 31 rs1042522 7520197 0.7807 98.9 0.449 G:C

*First one is the major allele. 

HWE, hardy-weinberg equilibrium; %Geno, percent of completed genotyping; MAF, minor allele frequency.

was generated using a program, ms, that uses the 
Wright-Fisher neutral model (Hudson, 2002). A total of 
100 sequences were sampled for five segregating sites. 
The fraction of recombination based on a finite-sites re-
combination model (Hudson, 1983) was set to 100, 
based on the assumptions of a recombination proba-
bility of 10−8 per base pair, a population size of 2.5× 
106, and a total of 1,001 base pairs. The relative posi-
tions of variants were 0.3404, 0.4542, 0.6029, 0.6413, 
and 0.7169 for each variant.
  To test real data, the genotype data from the 
HapMap project were used (2003; 2005). Among the 
publicly available genetic data, the region of tumor pro-
tein p53 (TP53 ) was selected considering the possibility 
that the genes involved in the fatal function of a life 
would have less selective or deleterious pressure on 
their common polymorphisms. Since allele age estima-
tion method depends on recombination, the selected re-
gion is the region of recombination hotspots that have 
consistently high recombination rates, as determined by 
the HapMap project (Fig. 3) (2005). Among the acces-
sible population groups, only Han Chinese in Beijing, 
China, (CHB) and Japanese in Tokyo, Japan, (JPT) are 
unrelated individuals. Since the current study deals only 
with unrelated individuals, CHB and JPT were selected 
for the study. The CHB and JPT populations, which 
show similar LD patterns, were combined for the analy-
sis to obtain better estimates. To reduce sampling error, 
only minor allele frequencies of more than 0.1 were se-
lected for the analysis, and seven single nucleotide 
polymorphisms (SNPs) in the region were finally selected 
(Table 2). 

Results

Simulation-based sample

 From a simulation-based sample for a test, the 100 se-
quences harboring five variants were generated as de-
scribed in the sample description, and the ages and the 



6  Genomics & Informatics  Vol. 7(1) 1-12, March 2009

Table 3. The ages and ancestral states of variants generated by a simulation 

Variant MAF Age order* Mean age With variant1 With variant2 With variant3 With variant4 With variant5

1 0.15 4 195342 NA
NA

“B”

0

“B”

195342

“B”

NA

“A”

2 0.13 3 145378
0

“B”
NA

213018

“A”

290755

“A”

NA

“B”

3 0.15 1 0
0

“B”

NA

“A”
NA

0

“A”

NA

“B”

4 0.45 5 NA
NA

“B”

NA

“A”

NA

“A”
NA

NA

“B”

5 0.09 2 135806
407418

“A”

0

“B”

0

“B”

0

“B”
NA

*The numbers from the youngest. 

“ ”, the initial haplotype state indicated in Fig. 1; Number above “ ”, allele ages from LD; MAF, minor allele frequency; NA, 

not applicable.

Table 4. Individual haplotypes and their numbers from the 

simulation data

Index Number Haplotype

1  9 10000

2 34 00000

3 10 01110

4 27 00010

5  3 10010

6  3 01000

7  5 00110

8  6 00001

9  3 10001

Total 100 -

Underline, possible recombinants.

Fig. 4. Ancestral graphs from the 

simulated haplotype data. (a) basic 

ancestral graph (b) ancestral re-

combination graph (recombination 

is indicated as dashed lines). The 

original allele is indicated as “0”, 

and the mutated allele is indicated 

as “1”. The only newly emerged 

recombinant is indicated in (b).

ancestral states of five variants were determined (Table 
3). As described in the methods section, only the ages 
of the variants that have lower frequencies than the 
coupled variants through LD are considered and are in-
dicated in Table 3. The mean age is not always the 
mean of all indicated ages in the Table since the ages 
coupled with the youngest variants are eliminated for 
the mean ages of other variants after each step to re-
duce variance. In this method, the complete LD always 
results in zero generation because allele ages depend 
only on the LD. The mean age of the oldest variant can-
not be found since there are no data left for estimating 
its allele age. The order of allele age is obtained from 
the mean allele ages of variants. From this information, 
the ancestral graph for the observed five variants is 
drawn as shown in Fig. 4a, and the ancestral recombi-
nation graph is drawn as shown in Fig. 4b. Starting 
from the common ancestral haplotype 00000, the occur-
rence of each variant generates a new node. For exam-
ining the haplotypes in the current generation, the in-
dividual haplotypes from the sample sequences are 

summarized in Table 4. 
  The detailed interpretation of the ancestral graph de-
rived from this test sample is described below and in-
cludes the putative recombination events. Starting from 
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Table 5. Probable combination of recombination from the 

simulation data

Recombination pair Recombinants

10000 00010 10010 00000

10001 00010 10010 00001

10000 01010* 10010 01000

01110 00000 01000 00110

01110 00010 01010* 00110

10001 00000 00001 10000

*Submerged haplotype. Underline, newly generated recom-

binant haplotype that was not shown in Fig. 4a.

Table 6. The ages and ancestral states of variants from the HapMap data in TP53 region 

MAF Age order* Age V1 V2 V3 V4 V5 V6 V7

1 0.406 3 5746 NA
0

“A”

7460

“A”

NA

“A”

9779

“A”

NA

“A”

2999

“A”

2 0.421 6 45124
NA

“A”
NA

45124

“A”

NA

“A”

NA

“A”

NA

“A”

3782

“A”

3 0.461 7 NA
NA

“A”

NA

“A”
NA

NA

“A”

NA

“A”

NA

“A”

NA

“A”

4 0.378 4 14289
9045

“A”

27701

“A”

11163

“A”
NA

4003

“A”

NA

“A”

839

“A”

5 0.417 5 17292
NA

“A”

25459

“A”

9125

“A”

NA

“A”
NA

NA

“A”

920

“A”

6 0.361 1 2194
3174

“A”

3748

“A”

1504

“A”

2072

“A”

1177

“A”
NA

1489

“A”

7 0.449 2 2295
NA

“A”

NA

“A”

2295

“A”

NA

“A”

NA

“A”

NA

“A”
NA

*From the youngest. 

“ ”, the initial haplotype state indicated in Fig. 1; Number above “ ”, Allele ages from LD; MAF, minor allele frequency; NA, 

not applicable.

the ancestral graph without recombination, among the 
current haplotypes at the final nodes in the ancestral 
graph, only haplotype 01010 disappears in the current 
sequences, while the rest of the haplotypes remain. 
Haplotype 01010 has the same age as variant 2, which 
has a mean age of 145378 generations. However, the 
haplotype should exist until the appearance of variant 3, 
the mean age of which is 0 generations. Although this 
is a simulated sample with a small sample size of 100 
sequences using unrealistic assumptions due to the 
base model of the simulation, it can be predicted that 
haplotype 01010 disappeared quite recently in the simu-
lation data based on the current study. 
  Even though this test is based merely on simulated 
data, there are four more haplotypes that were not seen 
in the ancestral graph without recombination: 10010, 
01000, 00110, and 00001. These are recombinants from 
the existing haplotypes, showing relatively low frequen-

cies, as indicated in Table 4. Ignoring double recombi-
nation and focusing on the haplotypes in the graph, the 
probable recombination pairs are summarized in Table 
5. Each recombination event happened in a boundary of 
limiting generations depending on the ages of the 
haplotypes. Here, the recombination is incorporated into 
the ancestral graph at the right after the recombining 
haplotype is generated (Fig. 4b). Among the possible re-
combination events in Table 5, the events involving the 
submerged haplotype and the haplotypes with lower fre-
quencies are excluded for ARG as in Fig. 4b, since the 
other recombination events are enough for generating 
the target haplotypes. 

Real data

For testing real data, the genotype data of protein p53 
(TP53 ) from the HapMap project were used (2003; 
2005). A detailed description of the selection criteria is 
in the methods section. From the seven SNPs selected 
(Table 2), the calculated allele ages are summarized in 
Table 6. As described in the methods section, the most 
frequent variant, variant 3, is the oldest. It happens here 
that the least frequent variant, variant 6, is the youngest. 
Interestingly, the minor allele frequency range of all sev-
en variants is small in this data set. The initial states be-
tween all variants are the state “A,” which means the 
new allele comes from the haplotype harboring the 
younger allele (minor allele in this study) of the existing 
older variant. Therefore, the ancestral graph can be 
drawn as shown in Fig. 5, Table 6 shows that, except 
for the two oldest variants, all variants have ages be-
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Fig. 5. Ancestral graphs from the 

real data. (a) basic ancestral graph

(b) ancestral recombination graph 

(recombination is indicated as da-

shed lines). The original allele is 

indicated as “0”, and the mutated

allele is indicated as “1”. The only

newly emerged recombinant is in-

dicated in (b).

tween 2194 to 17292 generations, a relatively short in-
terval compared with the emergence time of 45124 gen-
erations for the second-oldest variant (variant 2). This is 
consistent with the short range of minor allele frequen-
cies among the variants. 
  From the basic ancestral graph generated from the or-
der of the allele ages, there are eight haplotypes 
(number of segregating sites＋1), as shown in Fig. 5a. 
For comparison of the haplotypes in the graphs with the 
haplotypes estimated directly from the genotype data 
using existing methods (Table 7), the two most popular 
methods were used to estimate haplotypes and their 
frequencies. One is the accelerated EM algorithm similar 
to the partition/ligation method (Qin et al., 2002), which 
is implemented in Haploview Version 4 (Barrett et al., 
2005). Another is the coalescent-based haplotype esti-
mation using PHASE Version 2.1.1 (Stephens and 
Scheet, 2005; Stephens et al., 2001). In Table 7, the 
probable original allele (major allele) is indicated as “0,” 
and the changed allele is indicated as “1.” Also, in rep-
resenting haplotypes with original notation, the numbers 
“1, 2, 3, and 4” indicate “A, C, G, and T,” respectively, 

as notated in Haploview (Table 7). 
  As summarized in Table 7, the haplotypes and their 
frequencies estimated from these two methods are 
completely different, except for a haplotype (1110111) 
and the two most common haplotypes (0000000 and 
1111111), which are the original haplotype (0000000) 
and the haplotype that consists of altered alleles 
(1111111). Even the frequencies obtained by the two 
methods for those haplotypes are very different. In 
many cases, however, the inferred haplotypes are not 
very different between the methods. However, in this 
case, minor alleles of all the variants are linked together, 
comprising the two most common haplotypes, 0000000 
and 1111111, which makes the inference of the rest of 
the haplotypes more difficult. The rest of the haplotypes 
obtained using the EM algorithm show minor allele fre-
quencies of less than 0.05, but this is not the case us-
ing the coalescent method. 
  Interestingly, the method proposed in this study 
shows more similarity to the haplotype estimates using 
the EM algorithm. Haplotypes 1111111 and 1111101 are 
seen in haplotypes with frequencies higher than 0.01, as 
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Table 7. Comparison of haplotype frequencies (real data) from haploview and phase, and the existence in the constructed 

ancestral graph 

Index
Haploview (EM algorithm) PHASE (Coalescence)

Original Simplified Frequency Fig. 5* Haplotype Frequency Fig. 5*

 1 3444413 0000000 0.419 Y 0000000 0.282 Y

 2 1223222 1111111 0.235 Y 1111111 0.162 Y

 3 3423222 0011111 0.048 0000100 0.154

 4 1223212 1111101 0.046 Y 1110111 0.101

 5 1224413 1110000 0.035 1010000 0.047

 6 1244413 1100000 0.031 0100111 0.035

 7 3444412 0000001 0.028 0000110 0.032

 8 3444422 0000011 0.025 1110101 0.030

 9 1223213 1111100 0.019 Y 0000010 0.029

10 3424413 0010000 0.018 Y 1110110 0.027

11 3424222 0010111 0.012 1010111 0.020

12 3244413 0100000 0.011 0000111 0.011

13 1224222 1110111 0.010 0100100 0.010

*Y if the target haplotype exists in Fig. 5a. For original haplotypes, “1, 2, 3, and 4” denote “A, C, G, and T,” respectively.

Table 8. Probable combination of recombination pairs and 

recombinants for top 10 frequent haplotypes estimated by 

EM algorithm (real data). 

Recombination pair Recombinants

0000000 1111111 0011111 (3) 1100000 (6)

0010000 1111111 0011111 (3) 1110000 (5)

0000000 1111101 0000001 (7) 1111100 (9)

0000000 1111111 0000011 (8) 1111100 (9)

*( ), The number inside indicates the index number of 

Table 7.

estimated by EM (Table 7). Depending on the con-
structed ancestral graph in Fig. 5a, these haplotypes are 
generated most recently compared to other haplotypes 
in Fig. 5a, thereby indicating an increased probability of 
observing these two haplotypes in the current 
generation. Appending these two haplotypes, haplotype 
1111100 is the third recent haplotype among the eight 
haplotypes in Fig. 5a, and the haplotype also can be 
seen among haplotypes with frequencies higher than 
0.01 using EM inference (Table 7). The rest of the hap-
lotypes in the EM estimates are expected to come from 
recombination events. The reason for differences with 
the coalescent-based method is scrutinized in the dis-
cussion section.
  Similar to the simulation data, the probable combina-
tion of recombination for the top 10 frequent haplotypes 
as estimated by the EM inference is represented in 
Table 8. Among the haplotypes in Table 7, those not in-
dicated in the basic ancestral graph (Fig. 5a) are only 
considered as recombinants, which are the haplotypes 

with index numbers, 3, 5, 6, 7, and 8 in Table 7. 
Primarily, single recombination is considered. As in-
dicated in Table 8, the haplotypes that are not observed 
in Fig. 5a can now be generated by each single re-
combination event from the existing haplotypes of the 
basic ancestral graph, Fig. 5a. Interestingly, the third 
most frequent haplotype, 0011111, can be generated by 
recombination of either haplotype pairs 0000000 and 
1111111, or 0010000 and 1111111. In Table 8, the four 
recombination pairs include three haplotypes of each of 
the most common haplotypes, 0000000 and 1111111, 
which are very likely to be involved in recombination 
events due to their high frequency. Taking the haplotype 
frequencies into account, the most likely recombination 
events in Table 8 are incorporated into the graph in or-
der (Fig. 5b). 

Discussion
A novel methodology for constructing an ancestral 
graph is proposed in this study. The proposed method 
is based on the variants themselves rather than in-
dividual sequences, so the method produces results that 
are based on actual genetic data rather than models. 
Although more developments are necessary, the main 
advantages of this method are that (1) it is computation-
ally favorable, (2) it facilitates descriptive interpretation 
of the ancestral graph, and (3) it provides the easier and 
tangible incorporation of recombination into the graph. It 
is noteworthy that the proposed method can provide a 
descriptive ancestral graph rather than a probability dis-
tribution of all possible graphs as coalescent-based 
methods do. Therefore, the current method is designed 
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mainly for obtaining the actual ancestral graph rather 
than inferring population genetic parameters that is the 
main purpose in most coalescent-based studies. At the 
current stage, the method of allele age estimation is just 
aimed at finding the relative allele ages of variants. For 
accurately constructing the ancestral graph, improve-
ments are necessary for both the accurate allele age es-
timation and the accurate incorporation of recombi-
nation. 
  Problems in estimating allele age in this study can be 
mitigated if the effective population size is fairly large. 
When the effective population size is large, the allele 
frequency of a newly emerged mutation depends largely 
on the number of generations (Crow and Kimura, 1970; 
Kimura and Ohta, 1971). Therefore, it is more likely that 
the less frequent variant is younger than the more fre-
quent one. Another problem with this method is the as-
sumption of fixed allele frequencies during LD decay. In 
the binomial random process, the expected current al-
lele frequency is the initial allele frequency due to its 
Markovian property. However, in the actual situation, it 
is more likely that the variant came from a single muta-
tion and increased its frequency through random drift. 
Further advancements of allele age estimations can be 
achieved by considering the stochastic process of hap-
lotypes in a population. Since the consideration of the 
stochastic process is only for allele age estimation, the 
descriptive nature of this ancestral graph method will 
remain. The actual incorporation of recombination in the 
ancestral graph can also be improved by further devel-
opment of the method.
  As shown in the results section, the haplotypes from 
the proposed method using real data explain the hap-
lotypes estimated by the EM algorithm better than the 
coalescent method. Differences from the haplotypes es-
timated by the coalescent-based method may occur 
during the inference of genealogical histories by 
coalescence. As indicated previously, the underlying as-
sumptions of the coalescent theory can influence the re-
sulting haplotypes. Since the coalescent method is 
based exclusively on population demographic history, 
haplotype inference might be deviated from the actual 
data while running the haplotype inference. Since the 
EM method depends heavily on the data, the estimated 
haplotypes are statistically reasonable choices that can 
be observed from the given data. Therefore, it is en-
couraging that the proposed method represents hap-
lotypes that are more similar to those based on the EM 
estimates than the estimates from the coalescent-based 
simulation methods. The methodology in the current 
study does not depend heavily on the population model 
or the parameters. Therefore, it is more likely that the 
method in this study might be influenced by unknown 

population factors to a lesser extent than the previous 
coalescent-based methods. 
  Regarding the population differences in the TP53 
gene region, there are clear differences in the LD pat-
terns among different population groups. First, the allele 
frequencies are strikingly different. Some variants are 
frequent only in one population, and minor alleles of 
several variants are changed to major alleles in another 
population. Second, the linkage disequilibrium patterns 
are very different among ethnic groups. The samples 
from the Yoruba in Ibadan, Nigeria, (YRI) and from Utah, 
USA, (CEU) show more similarity in both allele fre-
quency and LD pattern than the samples from Han 
Chinese in Beijing, China, (CHB) and Japanese in 
Tokyo, Japan (JPT). It seems clear that much more sim-
ilarities in the polymorphic pattern are shown within 
Asian populations compared to other populations (Kim 
et al., 2008; Lee et al., 2008). The LD pattern of the 
combined sample of CHB and JPT shows much more 
linkage disequilibrium between variants than the other 
two populations. 
  It seems that the high recombination fraction in the 
TP53 gene region from the HapMap project might come 
from the population effect of CEU and YRI, since the 
estimated recombination rates were the averages for all 
the populations (2005). Because only CHB and JPT 
populations are used as indicated in the methods sec-
tion, the default recombination rate, 10−8, described in 
the methods section (Strachan and Read, 2000), was 
used instead of 2×10−8, as indicated in the HapMap 
data for the allele age estimation (Fig. 3). It should be 
noted that the proposed method is very sensitive to 
haplotype frequencies. Therefore, considering the pop-
ulation differences as mentioned earlier, caution would 
be necessary when interpreting the results from different 
population groups. 
  A novel ancestral graph method is proposed that fo-
cuses on variants rather than individual sequences. This 
deterministic method is less affected by past demo-
graphic histories and population genetic parameters 
than previous methods, and it presents a simpler way of 
constructing ancestral graphs, focusing only on the al-
lele frequencies of variants and LD of the genotyped 
variants. By excluding unnecessary population genetic 
parameters, the method can provide a more practical 
interpretation of the human genome, as described 
previously. More importantly, the proposed method 
seems to represent both real and simulation data quite 
well. The results of the real data allows for a better fit 
with the haplotypes estimated using the EM algorithm 
rather than the coalescent-based simulated method.
  The proposed method can incorporate the observed 
ancestral recombination event without the concern of 
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unobtainable MRCA. Due to the potential for localizing 
the disease variant based on genealogical history, the 
coalescent approach has attracted attention (Rosenberg 
and Nordborg, 2002). However, as indicated previously, 
the inference of the ancestral graph with recombination 
using the coalescent method is computationally chal-
lenging (McVean and Cardin, 2005). Although there are 
good approximations on coalescence with recombina-
tion for mapping disease variants (Larribe et al., 2002; 
Minichiello and Durbin, 2006; Molitor et al., 2003a; 
Molitor et al., 2003b; Molitor et al., 2005; Rannala and 
Reeve, 2001; Rannala and Slatkin, 1998; Reeve and 
Rannala, 2002), a new method is necessary to infer the 
actual genealogical history. The proposed approach for 
constructing ancestral graphs could be a possible future 
remedy for the previous coalescent approaches in terms 
of computational efficiency and theoretical settlement of 
constraints in mutation and problems in incorporating 
recombination events.
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