The Effect of a Chest CT Scan on the Treatment and Diagnosis of Major Blunt Chest Trauma

Il Hwan Park, M.D.*, Joong-Hwan Oh, M.D.*, Chong-Kook Lee, M.D.*

Background: Blunt chest trauma accounts for 90% of all chest traumas in Europe and the United States and this causes 20% of all trauma-related deaths. The major cause of morbidity and mortality after blunt chest trauma is undetected injuries. For this reason, chest computerized tomography has gained popularity for the evaluation of trauma, but it is expensive and it exposes patients to radiation. This study identified the clinical features associated with the diagnostic information obtained on a CT chest scan, as compared with a standard chest X-ray, for patients who sustained blunt trauma to the chest. This study also evaluated the role of a routine computed tomographic (CT) scan for these patients. The patients who had chest computed tomography done after the initial chest X-ray were analyzed separately for the presence of occult injuries. Material and Method: We studied 100 consecutive patients from November 2006 to July 2007: 74 patients after motor vehicle crashes and 26 patients after a fall from a height > 2 m. Simultaneous with the initial clinical evaluation, an anteroposterior chest radiograph and a helical chest CT scan were obtained for all the patients. The data extracted from the medical record included the vital signs, the interventions and the type and severity of injury (RTS). Result: Among the 100 cases, 79 patients showed at least more than one pathologic sign on their chest radiograph, and 21 patients had a normal chest radiograph. For 17 of the patients who had a normal chest X-ray, the CT scan showed multiple injuries, which were pneumothorax, hemothorax, lung contusion, sternal fracture etc. This represents that a CT scan is statistically superior to a chest radiograph to diagnose the pathologic signs. But on the other hand, as for treatment, only 31 patients were diagnosed by CT scan and they were treated with chest tube insertion etc. 42 patients needed only conservative management without invasive thoracoscopic treatment such as chest tube insertion or open thoracotomy. 27 patients were treated based on the diagnosis made by the chest radiograph and physical examination. Conclusion: Chest computerized tomography was significantly more effective than routine chest X-ray for detecting lung contusion, pneumothorax and mediastinal hematoma, as well as fractured ribs, scapula and sternum. Although the occult findings increased, the number of patients who needed treatment was small. Therefore, we suggest making selective use of a CT scan to avoid its overuse in ERs.

Key words: 1. Blunt trauma
 2. Thoracic radiograph
 3. Tomography, computed

*연세대학교 의과대학 홍부의과학교실
Department of Thoracic and Cardiovascular Surgery, Yonsei University Wonju College of Medicine
†본 논문은 2007년도 대한흉부외과학회 추계학술대회에서 발표되었음.
논문접수일 : 2008년 7월 10일, 심사통과일 : 2009년 2월 11일
차입처 : 오용환 (220-701) 강원도 원주시 양산동 162, 연세대학교 의과대학 홍부의과학교실
(Tel) 033-741-1323, (Fax) 033-742-0666, E-mail: mdjhoh@yonsei.ac.kr
본 논문의 저작권 및 전자제재의 저작소유권은 대한흉부외과학회에 있습니다.
홍부의 돌산은 미국과 유럽에서 전체 홍부 외상의 90% 정도를 차지하고 외상 관련 사망률의 20%를 차지한다[1]. 또한 미국에서 모든 홍부 돌산의 63%에서 78% 정도가 자동차 사고와 관계 있으며 단지 10%에서 17% 정도가 낙상에 의해서 발생한다고 보고하였다[2,3]. 본 연구에서는 74명의 자동차 유도사치 발생, 경미, 오도사치 등 관련 사고와 24명의 낙상과 관련된 사고가 있었다. 홍부 돌산 환자
의 2/3의 환자에서 70~90% 정도의 다발성 손상이 동반되며
이것[4]는 홍부의 돌산 및 폐조직의 돌산이 다발성 손상을 가진 환자의 이환율과 사망률에 중요한 연관성이 있다는 사실을 뒷받침 한다[5]. 홍부 돌산 환자의 일반적
인 응급실에서의 진단 방법은 기본적으로 방사시각와 자세
의 에스션 활염과 초음파 등의 방법이 있으며, 사망상 대부분의 사망자에서 기분상의 검사 방법으로 홍부에선 활
염 및 홍부진산단층촬영을 시행하고 있다. 이러한 응급
실에서의 기분적인 홍부진산단층촬영은 홍부에선 활
염 시행할 때, 형성, 폐조직 및 췌장, 헌골, 헌골
골절 등의 중요한 형성 손상을 놓치는 빈도를 감소 시킬
수 있다[6,7]. 또한 다양한 연구에서 홍부진산단층촬영
이 기능, 혈류, 체조직과 같은 환공 내 손상을 발견하는데 더욱 유용하다고 발표 되었다[8,9]. 이러한
모든 방법의 홍부 진산단층촬영을 시행할 때, 헌골의 드러난
상황이 있는 경우, 경미한 홍부의 활염 시행 후에 초기
검사에서는 홍부진산단층촬영을 주장해야 한다[9,10]. 그
다음로 홍부의 돌산에 있어 홍부진산단층촬영 여부가
홍공 샘플 및 간출혈 정책 등의 치료에 영향을 가하는
지름도 주지 않았기 때문이다. 홍공의 산출 신장기 및
단차 및 이비질의 기술적 진전에 따라진 홍부 진산단
촬영의 광범위한 사용으로 홍부 외상환자의 치료에 있어
서 과도하게 의지 되어 지는 것도 사실일 것이다. 비록 전
산화단층 활염이 진단에 있어 흥미로운 장비지만 환경
시간으로 인한 치료의 저해, 환자 치료의 저해, 방사선의
노출 등의 부적응도 있을 수 있다. 특히 많은 환자가 방문
하는 응급센터의 과도한 전산화단층 활염은 환자 헌
골에 있어 막대한 시간 낭비를 초래 할 수 있다. 이런 연
구에서는 홍부 돌산 환자에서 홍부진산단층 활영만으로 얼마
나 많은 병리 진단이 미루어지고 홍부 업무사 단층 활영
을 통하여 얼마나 많은 다른 병변을 찾을 수 있는지 홍부
예상 활염과 점퍼미터 활염의 진단율을 비교하고 또한 홍
부 돌산 환자의 치료에 있어서의 홍부진산단층촬영의
직후 근거가 희박으로 차이가 발생하는데서 부분을 발견하기
위한이다. 이를 근거로 하여 응급실에서의 홍부 돌산
환자의 내원 시에 홍부진산단층촬영의 시행 기준을 바
라보고 그로 인하여 환자의 치료와 입원 결정 등에 홍부
진산단층활영을 위한 시간적인 낭비를 줄이고 비용
적 인 면을 줄이기 위한 것이다.

대상 및 방법

응급실에 2006년 4월부터 2007년 7월까지 내원한 환자
중 다른 다발성 손상으로 인하여 타과에 입원한 환자는
제외하였다. 이들 중 홍부 돌산을 주로 홍부외과에 입원
한 환자에서 응급실 내원시 홍부에선 활염과 홍부진산
단면단층활영을 동시에 시행한 100례의 환자를 대상으로
조사하였다. 조사의 목표는 타과의 외상 등에 재로 상황
을 통하여 환자의 사고 경위와 응급실 도착시의 RTS
(Glasgow Coma scale, 수축기 혈압, 환자의 호흡 수)를 조
사 하여 외상 수준을 구별하였고 그 외에 다단 위의 손
상, 기관 상상관이나, 홍공 삽입술, 간출혈 절제 입원이 필요하
던 환자들을 조사 하였다. 또한 홍부 손상으로 인한 홍공 삽
입술 및 간출혈 절제 등의 치료의 시점은 확인이 전산화단층
촬영 시행 전 후로 조사함과 동시에 각 병로(기능,
혈류, 뇌성, 뇌질, 헌골 골절, 헌골 골절, 폐기 심질, 췌장,
췌장, 간)의 황부에선 활염과 홍부 점퍼미터 활영
간의 진단율을 비교 하고 하였다. 그리고 각각의 진단율의 동
적 유의성을 조사하였다. 또한 초기 홍부에선 활염의 변동
성 및 신경학적 조건을 보인 사례 중 홍부진산단층촬영을 통
하여 새로운 발견된 진단을 조사하고(Fig. 1, 2) 그에 따른
환자의 치료 변화를 조사하였다. 100례의 환자중 11례에
환자의 급성호흡곤란으로 기계호흡이 필요한 환자가
있었다. 임상적인 증상으로는 감소된 호흡음, 홍부 통증
및 시각 등을 조사 하였으며 기존적인 허혈적 치료를 실시
하고 외상 등장 재료 및 치료를 조사 하였다. 또한 환자의
영상의학과 증상학의 홍부에선활영과 전산화단층활염의
비정상성의 신경을 기록하였으며 홍부진산단층촬영이
이루어지기 전과 후를 구분하여 홍부외과적 치료, 재
출혈 및 홍관상출혈의 지점을 구분하였으며, 또한 두
개의 방사선학적 진단 방법인 홍부에선활염과 홍부전자
산화단층촬영의 방사 진단 결과를 비교하였다. 조영제를
이용한 전산화단층촬영은 응급실에서(35~80 min)의
Table 1. Comparison of ct scan and chest film findings in all 100 patients

<table>
<thead>
<tr>
<th>Radiologic findings</th>
<th>Chest X-ray (n=100)</th>
<th>C-T scan (n=100)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rib fracture</td>
<td>64</td>
<td>84</td>
<td>0.000</td>
</tr>
<tr>
<td>Sternal fracture</td>
<td>1</td>
<td>8</td>
<td>0.001</td>
</tr>
<tr>
<td>Hemothorax</td>
<td>36</td>
<td>71</td>
<td>0.000</td>
</tr>
<tr>
<td>Pneumothorax</td>
<td>23</td>
<td>55</td>
<td>0.000</td>
</tr>
<tr>
<td>Lung contusion</td>
<td>24</td>
<td>46</td>
<td>0.000</td>
</tr>
<tr>
<td>Pneumomediastinum</td>
<td>1</td>
<td>9</td>
<td>0.002</td>
</tr>
<tr>
<td>Hemothorax</td>
<td>1</td>
<td>11</td>
<td>0.001</td>
</tr>
<tr>
<td>Subcutaneous emphysema</td>
<td>16</td>
<td>30</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Fig. 1. Chest X-ray showing left 10th rib fracture and increased bronchial marking.

Fig. 2. Chest CT showing both multiple rib fracture, hemothorax pneumothorax, subcutaneous emphysema and lung contusion.

결과

100예의 환자 중 자동차 사고로 입원한 환자가 74예였고, 낙상으로 인한 입원 환자가 26예였다. 남자는 78예였고 여자는 22예 있으며, 평균연령은 55±14세였다. 초기 임상적인 검사와 함께 일반 홍부에스션을 홍부진단환영을 모든 환자에서 동시에 시행하였다. 홍플리에서 전산화단층촬영까지의 평균 시간은 78.5±37.3분이었고 전산화단층 활명 동안의 다른 합병증은 발견되지 않았다. 100예의 환자의 평균 Revised Trauma Score는 10.91±1.05 (6-12점)이었으며 1예의(RTS 6점) 환자 외에는 모든 환자에서 9점 이상의 위상 점수를 기록하였다. 72예의 환자는 통부 외상만이 발견되었고 나머지 28예의 환자는 다발성 손상을 가지고 있었다. 이중에 응급실에서 기관내 산판을 시행한 환자는 11예였으며, 홍판 산판을 시행한 환자는 총 58명이었다. 홍판 산판을 시행한 58명의 환자 중 27명의 환자는 홍부전산화단층활영 이전에 홍판 산판을 시행하였고 31예의 환자에서 홍부전산화단층 활영 이후에 홍판 산판을 시행하였다. 홍부전산화단층활영 이후에 홍판 산판을 시행한 환자 중 19예에서는 홍부에스션 사건과 같은 진단을 가진 환자였다. 17예의 환자에서 나후 항산, 축혈 등의 원인으로 홍판작성 치료가 필요 했으며 100예의 환자 중 2명의 사망환자가 발생하였다.

100예 중 79예의 환자에서 한 개 이상의 홍부에스션 검사상 이상 소견이 발견되었고, 96예의 환자에서 전산화단층 활영상 병적인 소견이 나타났으며, 100예 중 4예의 환자에서 홍부에스션과 홍부전산화단층활영에서 아무것도 발견되지 않았다. 100예의 환자에서 홍부에스션 검사와 홍부 전산화단층활영의 발생전략적 소견상 병적소견이 발견된 경우 홍부전산화단층활영이 여러 가지 홍부외상에 의한 진환인 기흉, 허혈, 허혈중, 허혈중기종 및 혈종, 피하 기흉 등의 진단에서 통계적으로 유의하게 정
Table 2. CT scan findings in 17 of 21 patients with normal chest radiographs and therapeutic/diagnostic procedures.

<table>
<thead>
<tr>
<th>Injury</th>
<th>No. (n=21)</th>
<th>%</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemothorax</td>
<td>17</td>
<td>79</td>
<td>Closed thoracostomy</td>
</tr>
<tr>
<td>Lung contusion</td>
<td>17</td>
<td>79</td>
<td>Closed observation</td>
</tr>
<tr>
<td>Pneumothorax</td>
<td>17</td>
<td>79</td>
<td>No need closed thoracostomy</td>
</tr>
<tr>
<td>Rib fracture</td>
<td>17</td>
<td>79</td>
<td>Pain management</td>
</tr>
<tr>
<td>Sternal fracture</td>
<td>17</td>
<td>79</td>
<td>Control echocardiography</td>
</tr>
<tr>
<td>Mediastinal hemorrhage</td>
<td>17</td>
<td>79</td>
<td>Admission to ICU</td>
</tr>
<tr>
<td>Pneumomediastinum</td>
<td>17</td>
<td>79</td>
<td>Bronchoscopic and esophagogram</td>
</tr>
<tr>
<td>Subcutaneous emphysema</td>
<td>17</td>
<td>79</td>
<td>Closed observation</td>
</tr>
</tbody>
</table>

Table 3. The determinant factors of closed thoracostomy and emergent explo-thoracotomy.

<table>
<thead>
<tr>
<th>Diagnostic tool</th>
<th>N=100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest X-ray</td>
<td>24</td>
</tr>
<tr>
<td>Chest CT scan</td>
<td>31</td>
</tr>
<tr>
<td>Physical examination (blood pressure, O₂ saturation, acute respiratory failure)</td>
<td>3</td>
</tr>
<tr>
<td>No need for closed thoracostomy and explo-thoracotomy</td>
<td>42</td>
</tr>
</tbody>
</table>

화한 전단 방법을 알 수 있었다(Table 1). 100명의 환자 중 홍부흡수성 검사상 정상소견을 보인 21명의 환자를 다시 분류하였다. 이 중 17명에서 홍부 컴퓨터 단층 활영상 이상소견이 발견되었다(Table 2). 이 중 2개의 증례동출혈 환자와 1개의 증례등기종 환자가 발견되었고, 증례동출혈 환자는 증례치료실에 입원하여 모니터링을 실시하였고, 증례등기종 환자는 기관지 내시경 및 식도조영술을 시행하였으나 특이 소견은 관찰되지 않았다. 증례동학량, 혈행 등 대동맥 손상을 의심하여 홍부전산화단층 활영을 시행한 결과 대동맥 손상 환자는 발견되지 않았다. 홍부 전산상으로 내원한 환자 중 홍부흡수성, 기관조영 등의 홍부 외과적 치료를 시행한 환자에서 치료의 경과요인은 홍부 흡수선활염 24예, 홍부전산화단층촬영 31예(Table 3)로 나타났다. Table 2에서와 같이 홍부전산화단층촬영이 전단에

서의 이점을 발견 할 수 있었지만, 홍부흡수성 및 기관조영의 결과에 있어서는 중요한 경과요인으로 작용하지는 않았다. 환자의 RTS 등의 외상점수의 차이와 환자의 치료 결정요인을 분석한 결과에 보수 분석상 각 치료 결정요인과 외상 점수간의 차이가 있음을 확인하였다(p<0.000). 각각 3개의 군사이에 유의한 차이를 알아보기 위해 Turkey-B 방법을 이용한 각 군 간의 사후 검정을 시행하였다. 특히 임상증상(혈액학적 소견, 급성호흡곤란 등) 만으로 치료를 한 경우(군1)와 다른 홍부 활영을 통한 치료 결정을 한 군(군2) 간의 외상 점수의 차이가 통계학적
로 의미가 있음을 발견할 수 있었다(Table 4, 5). 즉 외상 점수가 높은 경우(혈액학적 안정 상태)에서는 홍부전산화단층촬영을 위해서 환자 치료의 지연, 입원 결정 등에 대하여 시간적, 경제적 혼란을 줄여야 할 것이다.

Table 4. Comparison of the revised trauma score between each group.

<table>
<thead>
<tr>
<th>Determinant factor of Treatment</th>
<th>RTS</th>
<th>N=100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest X-ray</td>
<td>10.67±0.87</td>
<td>24</td>
</tr>
<tr>
<td>Chest CT scan</td>
<td>10.74±0.93</td>
<td>31</td>
</tr>
<tr>
<td>Physical examination</td>
<td>9.00±2.64</td>
<td>3</td>
</tr>
<tr>
<td>No need for closed thoracostomy</td>
<td>11.31±0.87</td>
<td>42</td>
</tr>
</tbody>
</table>

There seems to be a significant statistical difference when comparing RTS between each group (p<0.000); RTS=Revised trauma score.

Table 5. Comparison between two groups that show difference in RTS.

<table>
<thead>
<tr>
<th>Thoracostomy</th>
<th>N</th>
<th>Significant subgroup (p<0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical examination</td>
<td>3</td>
<td>9.00</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>24</td>
<td>10.67</td>
</tr>
<tr>
<td>Chest CT scan</td>
<td>31</td>
<td>10.74</td>
</tr>
<tr>
<td>No need for closed thoracostomy</td>
<td>42</td>
<td>11.31</td>
</tr>
</tbody>
</table>

RTS=Revised trauma score.

비록 심각한 외상은 의학적으로나 사회적으로 매우 중
요하하지만 유럽 외에의 거의 소수의 역학조사가 개개한
해 experiencia로 인한 효과와의 50% 이상이 당신에 의한다고 보고하고 있다[11]. 또한 유럽,
사용하는 뿐만 아니라 혼합형과 혼합형 재단,
고등학교의 경우 단독으로 인해 확인되었으나, 중
부를 포함한 전반과 중앙의 정의는 아직 논쟁
중에 있다.

이번 연구에서 휴식전산화단출혈은 휴식 무산혈
실이 있으며, 혈액학적 점검을 위해 외부에 손
상(전단대)에서 일어난 휴식전산화단출혈이 더욱
감각에 의한 손상은 견딜 수 없고[9,10]. 또한
휴식전산화단출혈은 혈청과 같은 조직의 손상을
 더욱 용이하게 방출할 수 있으며, 휴식전산화단출혈이
 반드시 필요하다고 주장하는 또 다른 연구자들은 숙이있
는 기형이 특히 양측으로 위치해 있는 경우 휴식화단출
혈에 의해 40%정도가 새로운 생애로 보고 하였
다[11,14]. 또한 외상성 대동맥 박리증 등의 흔히인
손상은 종래의 효과가 발생할 수 있다고 주장하는 사람들
일정 7%정도에서 정상적인 휴식은 백일 수 있어
휴식전산화단출혈은 기본적으로 정상하고 주장
하는 사람들도 있다[15]. 그러나 반대의 의견으로 일반 휴식
혈액은 원래 혈청이 밀달 대동맥의 손상 등은 그를
의심하게 하는 종합적인 확장, 대동맥 용기의 손상, 변이
되어 있는 극소의 기관지 등의 손상은 발생되어질 수 있
다고 주장하는 사람도 있다[16,17]. 이번 연구에서도 인공
호흡이 필요 했던 환자의 대부분은 휴식전산화단출혈
을 시행하기 이전에 소생술에서 휴식전산화단출혈을
하여 기관 심장수 및 휴식전산화단출혈을 시행하였고 비록 컴퓨터
활용이 대외 손상을 확인시키는 데에 더욱 용이 하지만,
치료는 전환적인 조치가 아니라, 환자당, 방사선학적 조치 등에
의해서 이루어졌고 대부분의 정상 상태에 있는 환자에서
단에 특별한 치료를 요하지 않는 경우가 대부분이었다.
이번 연구에서 비교적 휴식전산화단출혈 및 중간 개개혈의 빈도
이 낮은 것은 연구된 환자의 몇몇은 RTS 점수와 환자의 혈
역학적 상태가 양호한 것과 관련이 있을 수 있다. 특히
상한 상태의 환자에서 컴퓨터 활용을 통한 더욱 많은 진
단을 발견하는 것이 초기 환자 치료에서 있어야 하는
것이 의문이다. 비록 다른 연구에서는 환자의 70% 정도
가 컴퓨터 활용을 통하여 휴식의 위치변경, 호흡기의 모
드 변경, 중재위 치료 등의 결정에 도움을 주었다고 발표
하였다[18] 반대로 다른 연구에서는 휴식의 결과로
인은 환자의 의료에 있어서 컴퓨터 활용을 통한 새로운 발
현이 환자의 의료에 있어서 큰 영향을 주지 않았
다고 보고 하였다[6,9]. 본 연구에서도 휴식전산화단출혈
을 통한 환자 관리 등의 치료 결과를 확인한 결과는 31예
이었으며 이중 19예에서는 휴식전산화 신안에서 이상
발견한 결과는 19예에서 보니 휴식전산화단출혈의
유발에 96%이지만 환자의 치료와 예방에 미치는 효과
는 미미하다 할 수 있다. 그리고 응급실 내원시 환자의
혈액학적 조건과 간단한 RTS 등을 이용한 환자의 구분
과 휴식 흔들 환자에서의 컴퓨터 활용의 용용
과 이상을 보 수 있으므로 생각되어 환자의 치료 결정
이 있어서의 컴퓨터 활용여부에 대한 의존도를 낮추 수
있으려 생각한다.

휴식전산화단출혈이 일반흡유산소 캐명에 비하여
기구, 혈압, 혈청과 혈압의 관계, 혈청기류, 폐기, 골점, 정
동 공간, 흔들 공간에서 통계적으로 유의하게 더 민감하
병적 조언을 방출할 수 있었다. 그러나 이러한 환자에
서 휴식전산화단출혈이나 응급 경보를 결정하는데 있어서는
휴식전산화단출혈이 큰 도움이 되지는 않았다. 그러므
로 심각한 두부 손상이 없는 RSTS 8점 이상인 혈액학적
으로 안정된 환자에서는 휴식전산화단출혈을 선택으
로 심사해야 하며 휴식전산화단출혈을 하기 위해서는 환자
치료에 시간적, 경제적 손실을 줄이어야 한다고 생각한다.

기관심판이 되어 있는 환자들은 초기에 호흡을 감소,
휴식 흔들 등의 임상적 정지를 없애기 위해 일반흡유
산소 캐명과 함께 휴식전산화단출혈을 하는 것을
제안한다. 중요한 것은 우리가 인급했던 임상 증상들이
변수를 가질 수 있으므로 의사는 모든 임상적 측면과 방
사선학적 조언을 고려해서 휴식전산화단출혈의 사용
여부를 결정해야 한다. 이와로 인하여 휴식전산화단출
혈의 의용을 없는 시험을 예방하여 방사선과의 노출, 치료
의 억제, 임상 의사들의 치료함에 있어서 컴퓨터 활용
에 대한 의존도를 줄여 나갈 수 있을 것이다.
-국문 초록-

배경: 홍부도장은 전체 홍부 손상의 90% 정도를 차지하며 외상과 관련된 사망률의 20%를 유발 시킨다. 홍부도장에 의한 손상은 이환율과 사망률의 주요 원인으로 알려져 있으며, 손상이 남아있기 때문이 다. 그러하여 홍부전산화단층촬영은 외상환자의 진단적 검사에서 매우 자주 사용되어져 왔다. 그러나 홍부 컴퓨터 촬영은 가격이 비싸고, 방사선 노출을 증가 시킬 수 있다. 이번 연구를 통하여 홍부도장 환자에서 홍부 전산화단층촬영과 비교하여 홍부전산화단층촬영을 통하여 얼마나 더 많은 정보를 얻을 수 있는지 조사해 보고, 그리고 홍부 컴퓨터 촬영의 진단과 치료에 있어서의 역할을 알아보고자 한다.

대상 및 방법: 2006년 11월부터 2007년 7월까지 응급실 내원한 환자 100명을 대상으로 하였다. 이 중 74명의 자동차 관련사고 환자와 26명의 낙상 사고 환자가 있으면, 홍부에스션과 홍부전산화단층촬영을 동시에 시행한 환자를 전체 응급실 환자 중에서 선택하였다. 자료는 자료를 통하여 전력학적 소견, 증세적 검사 여부, 환자의 증종도(RTS)와 종류를 조사하였으며, 초기 응급실 내원환자 중 홍부도장이 시행된 환자 중 홍부도장이 시행한 환자 중 내원환자로 발전되지 못한 병적 소견을 각각 적절하게 분석하였다. 결과: 100명의 환자 중 홍부에스션 검사상 하나 이상의 병적 소견을 보인 환자가 79명이었으며, 21명의 환자에서의 홍부에스션 검사상 정상 소견을 보였으며, 이 21명의 환자 중 17명에서 홍부전산화단층촬영 이상소견이 발견되었다. 홍부에스션 검사상 발전하지 못한 소견으로는 기흉, 혈흉, 폐쇄성, 홍부 끝질 등의 증상이 있었으며 이러한 병적 소견의 진단은 홍부전산화단층촬영이 홍부에스션 검사보다 통계적으로 유의하게 우수한 것으로 나타났다. 하지만 치료에 있어서는 홍부전산화단층촬영 시행 후 발견된 빈번으로 통관성질환등의 치료를 시행한 환자는 31명에 불과했고 홍부전산화단층촬영의 경우 42명이었다. 홍부에스션과 홍부전산화단층촬영의 비교하여의 역할을 알아보기 위하여 이 연구를 진행하였다. 그러나, 홍부전산화단층촬영의 오남용은 막기 위하여 신선적인 홍부전산화단층촬영을 고려해야 할 것이다.

중심 단어: 1. 홍부도장
2. 방사선 홍부촬영
3. 홍부전산화단층촬영