Pollution Characteristics and Loading Flux of Polycyclic Aromatic Hydrocarbons(PAHs) in Riverine Waters of Jinhae Bay, Korea

진해만 하천에서 다환방향족탄화수소 유입부하량과 오염특성

  • You, Young-Seok (Faculty of Marine Technology, Chonnam National University) ;
  • Kim, Jwa-Kwan (Dept. of Environmental Engineering, Catholic University of Busan) ;
  • Cho, Hyeon-Seo (Faculty of Marine Technology, Chonnam National University)
  • 유영석 (전남대학교 수산해양대학 해양기술학부) ;
  • 김좌관 (부산가톨릭대학교 환경공학과) ;
  • 조현서 (전남대학교 수산해양대학 해양기술학부)
  • Published : 2009.12.31

Abstract

PAHs(Polycyclic Aromatic Hydrocarbons) compounds may enter into the marine environment in a number of ways, and PAHs in coastal area and estuary adjacent to urban area and industrial activities region are mainly introduced into marine environment via atmosphere or river. The field surveys to evaluate the pollution of PAHs in rivers of Jinhae bay were carried out in August, 2008. The water samples collected from seven main rivers and Deokdong WWTP(Waste water Treatment Plant) which lead to Jinhae bay. 16 PAHs which had been selected as priority pollutants by EPA were analyzed. The range and mean of dissolved Total PAHs concentrations in the rivers and Duckdong WWTP that lead to Jinhae bay were shown to be 9.79~128.25(mean 36.94)ng/L, while the range and mean of Total PAHs concentrations in SPM(Suspended Particulate Matter) were shown to be 1,81434~8,893.37(mean 4,657.73)${\mu}g$/kg dry wt. The dissolved Total PAHs and Total PAHs in SPM were shown to be high concentrations in the Semhocheon which leads to Masan bay that is the most polluted area of Jinhae bay, while those were shown to be low concentrations at rivers which lead to the west area of the bay. The ranges and means of the loading fluxes from rivers and Duckdong WWTP were calculated at 0.06~12.05(mean 1.86)g/day for dissolved Total PAHs and at 0.12~16.00(mean 2.41)g/day tor Total PAH in SPM. The loading flux of Total PAHs from Duckdong WWTP was shown to be the greatest, occupying more than 80% of Total loading flux from all rivers and WWTP to Jinhae bay. The composition patterns of PAHs compound by the number of benzene ring between dissolved PAHs and PAHs of SPM were different each other. Low molecuar weight PAHs of dissoloved compounds were in high concentration, while high molecular weight PAHs of SPM were in high concentration. These results were due to physical and chemical characteristics of PAHs and were similar to those of other studies. The total PAHs concentrations of dissolved and SPM in this study are lower than those of other studies. The extent of PAHs pollution appeared to be not serious in reverine waters of Jinhae bay.

PAHs(다환방향족탄화수소) 화합물은 해양환경으로 다양한 경로를 통해 유입되며, 연안역과 하구역에 있어서는 도시화와 산업활동 중 연소에 의하여 발생되어 주로 대기와 하천을 통하여 유입된다. 유입된 PAHs 화합물은 잠재적으로 해양 수서환경 생물에 대해서 발암 및 돌연변이를 일으키고 있다. 따라서 PAHs 화합물의 오염이 예상되는 진해만에 유입되는 주요하천에서 PAHs 화합물의 분포특성과 유입부하량을 조사하여 PAHs 화합물의 오염특성을 파악하였다. 진해만으로 유입되는 주요 하천수 및 하수처리수에서 용존 Total PAHs 화합물의 농도범위와 평균값은 9.79~128.25 (평균 36.94)ng/L를 나타내었으며, 부유입자물질 중 Total PAHs 화합물의 농도범위와 평균값은 1,814.34~8,893.37(평균 4,657.73)${\mu}g$/kg dry wt.로 나타났다. 용존 PAHs 화합물과 부유입자물질 중 PAHs 화합물 모두 유사하게 도시화와 산업화가 이루어진 마산시로부터 유입되는 삼호천에서 기장 높은 값을 나타내었다. 하천수 및 하수처리수에서 PAHs 화합물의 조성 형태는 용존 PAHs 화합물은 저분자량 PAHs 화합물이 대부분을 차지하고 있어 PAHs 화합물의 물리 화학적 성질에 의한 것으로 판단된다. 조사된 하천을 통해 진해만으로 유입되는 용존 Total PAHs 화합물의 유입부하량 범위는 0.06~12.05g/day, 평균 유입부하량은 1.86g/day 그리고 총 유입부하량은 14.85g/day로 산정되었다. 부유입자물질 중 Total PAHs 화합물의 유입부하량 범위는 0.12~16.00g/day, 평균 유입부하량은 평균 2.41g/day 그리고 총 유입부하량은 19.27 g/day로 산정되었다. 용존 PAHs 화합물과 부유입자물질 중 PAHs 화합물 모두 진해만으로 유입되는 유입부하량은 덕동하수처리장이 약 80% 이상으로 대부분을 차지하는 것으로 나타났다. 그리고 타 연구들과 비교에서 진해만 주요 하천수와 하수처리수는 아직까지 낮은 농도를 나타내지만 진해만 연안에 PAHs 화합물의 오염발생원이 주변에 산재하고 있어 PAHs 화합물의 오염정도가 심화될 수도 있다.

Keywords

References

  1. 해양수산부(2005), 해양오염 퇴적물 조사 정화.복원체계 구축(II), pp. 1-65.
  2. Countway R. E., R. M. Dickhut, E. and A. Canuel (2003), Polycyclic aromatic hydrocarbon(PAH) distributions and associations with organic matter in surface waters of the York River. VA Estuary. Org, Geochem,Vol. 34, pp. 209-224. https://doi.org/10.1016/S0146-6380(02)00162-6
  3. Daskalakis, K. D. and T. P. O'Connor(1995), Distribution of chemical concentrations in U.S. coastal and estuarine sediment, Marine Environmental Reserch, Vol. 40, pp. 381-398. https://doi.org/10.1016/0141-1136(94)00150-N
  4. Donald, C. M., B. B. McCain, D. W. Brown, U. Varanasi, M. M. Krahn, M. S. Myers, S. L. Chan, R. Thomas and R. Evans (1987), Sediment-associated contaminants and liver diseases in bottom-dwelling fish, Ecol. Eff. in situ Sediment Contam., Vol. 149, pp. 67-74.
  5. Doong, R. A. and Y. T. Lin(2004), Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan. Water Res. Vol. 38, pp. 1733-1744. https://doi.org/10.1016/j.watres.2003.12.042
  6. Fernandes, M. B., M. A. Sicre, A. Boireau and J. Tronszynski(1997), Polyaromatic hydrocarbon (PAH) distributions in the Seine River and its estuary. Marine Pollution Bulletin., Vol. 34, pp. 857-867. https://doi.org/10.1016/S0025-326X(97)00063-5
  7. Gotz, R., O. H. Bauer, P. Friesel and K. Roch(1998), Organic trace compounds in the water of the River Elbe near Hamburg. Chemosphere Vol. 36, pp. 2103-2118. https://doi.org/10.1016/S0045-6535(98)00009-5
  8. Guo, W., M. He, Z. Yang, C. Lin, X. Quan and H. Wang(2007), Distribution of Polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River watershed, China. Chemosphere Vol. 68, pp. 93-104. https://doi.org/10.1016/j.chemosphere.2006.12.072
  9. Guzzella, L. and A. Depaolis(1994), Polycyclic Aromatic Hydrocarbons in sediments of the Adriatic sea, Marine Pollution Bulletin, Vol. 28, pp. 159-165. https://doi.org/10.1016/0025-326X(94)90392-1
  10. Hooftman, R. N.(1981), Inventory of Data on Environmental Carcinogens; PAHs and N-Heterocycles ; Report to the EC- JRC ; Delft, The Netherlands, TNO Cl, p. 81.
  11. Law, R. J. and J. L. Biscaya(1994), Polycyclic aromatic hydrocarbons(PAH)-problems and progress in sampling, analysis and interpretation. Marine Pollution Bulletin, Vol. 29, pp. 235-241. https://doi.org/10.1016/0025-326X(94)90415-4
  12. Li, G., X. Xia, Z. Yang, R. Wang and N. Voulvoulis(2000), Distribution and source of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China Environmental Pollution, Vol. 144, pp. 985-993.
  13. Lipiatou, L., I. Tolosa, R. Simo, I. Bouloubassi, J S. Dachs, M. A. Sicre, J. M. Bayona, J O. Grimault, A. Saliot and J. Albagies(1997), Mass budget and dynamics of polycyclic aromatic hydrocarbons in the Mediterranean sea. Deep-Sea Res., Vol. 44, pp. 881-905. https://doi.org/10.1016/S0967-0645(96)00093-8
  14. Karcher, W.(1988), Spectral Atlas of Polycyclic Aromatic Compounds, The Netherlands, Vol. 2, pp. 20-24.
  15. Karickhoff, S. W., D. S. Brown and T. A. Scott(1979), Sorption of hydrophobic pollutants on natural sediments. Water Research, Vol. 13, pp. 241-248. https://doi.org/10.1016/0043-1354(79)90201-X
  16. Lee, S. J., H. B. Moon, M. Choi and J. H. Goo(2005), Estimation of PAHs Fluxes via Atmospheric Deposition and Riverine Discharge into the Masan Bay, Korea. J. Fish. Sci. Technol. Vol. 8, pp, 167-176.
  17. Luo, X. J., S. J. Chen, B. X. Mai, Q. S. Yang, G. Y. Sheng and J. M. Fu(2006), Polycyclic aromatic hydrocarbons in suspended particulate matter and sediments from the Pearl River Estuary and adjacent coastal areas, China. Environmental Pollution. Vol. 139, pp. 9-20. https://doi.org/10.1016/j.envpol.2005.05.001
  18. Maskaoui, K, J. L. Zhou, H. S. Hong and Z. L. Zhang(2002), Contamination by polycyclic aromatic hydrocarbons in the Jiulong river estuary and western Xiamen sea, China. Environmental Pollution, Vol. 118, pp. 109-122. https://doi.org/10.1016/S0269-7491(01)00208-1
  19. Mitra, S. and T .S. Bianchi(2003), A preliminary assessment of polycyclic aromatic hydrocarbon distributions in the lower Mississippi River and Gulf of Mexico. Marine Chemistry, Vol. 82, pp. 273-288. https://doi.org/10.1016/S0304-4203(03)00074-4
  20. NlST(2004), Certificate of Analysis; Standard Reference Material 1941b. Standard Reference Materials Program NlST, 14.
  21. Shi, Z., S. Tao and B. Pan(2005), Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons. Environment. Pollution, Vol. 134, pp. 97-111. https://doi.org/10.1016/j.envpol.2004.07.014
  22. Shaw, M., I. R. Tibbetts and M. F. Jochen(2004), Monitoring PAHs in the Brisbane River and Moreton Bay, Australia, using semipermeable membrane devices and EROD activity in yellowfm bream, Acanthopagrus australis. Chemosphere, Vol. 56, pp. 237-246. https://doi.org/10.1016/j.chemosphere.2004.03.003
  23. Sun, J. H., G. L. Wang, Y. Chai, G. Zhang, J. Li and J. Feng(2008), Distribution of polycyclic aromatic hydrocarbons (PAHs) in Henan Reach of the Yellow River, Middle China. Ecotoxicology and Environmental Safety. Vol. 79. pp. 733-739.
  24. Tolosa, I., J. M. Bayona and J. Albaiges(1996), Aliphatic and polycyclic aromatic hyclrocarbons and sulfur/oxygen derivatives in northwestern mediterranean sediments : Spatial and temporal variability, fluxes and budgets. Environ. Sci. Technol., Vol. 30, pp. 2495-2503. https://doi.org/10.1021/es950647x
  25. Zhang, Z. L., J. Huang, G. Yu and H. S. Hong(2004), Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China. Environ. Pollut., Vol. 130, pp. 249-261. https://doi.org/10.1016/j.envpol.2003.12.002