Fabrication of patterned substrate by wet process for biochip

습식 공정법에 의한 바이오칩 용 패터닝 기판 제조

  • Kim, Jin-Ho (Korea Institute of Ceramic Engineering and Technology, Glass & Display Team) ;
  • Lee, Min (Korea Institute of Ceramic Engineering and Technology, Glass & Display Team) ;
  • Hwang, Jong-Hee (Korea Institute of Ceramic Engineering and Technology, Glass & Display Team) ;
  • Lim, Tae-Young (Korea Institute of Ceramic Engineering and Technology, Glass & Display Team) ;
  • Kim, Sae-Hoon (Department of Ceramic Engineering, Gangneung-Wonju National University)
  • 김진호 (한국세라믹기술원 유리 디스플레이팀) ;
  • 이민 (한국세라믹기술원 유리 디스플레이팀) ;
  • 황종희 (한국세라믹기술원 유리 디스플레이팀) ;
  • 임태영 (한국세라믹기술원 유리 디스플레이팀) ;
  • 김세훈 (강릉-원주대학교 세라믹공학과)
  • Published : 2009.12.31

Abstract

Hydrophobic/hydrophilic patterned substrates were fabricated on a glass substrate by a liquid phase deposition (LPD) method. Hydrophobic surface was obtained by modifying ZnO thin films with a rough surface using a fluoroalkyltrimethoxysilane (FAS) and hydrophilic surface was prepared by decomposing FAS on an exposed to UV light. The hexagonal ZnO rods were perpendicularly grown by LPD method on glass substrates with a ZnO seed layer. The diameter and thickness of hexagonal ZnO rods were increased as a function of increases of immersion time. The surface morphology, thickness, crystal structure, transmittance and contact angle of prepared ZnO thin films were measured by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectrophotometer (UV-vis) and contact angle measurement. Hydrophilic ZnO thin films with a contact angle of $20^{\circ}{\sim}30^{\circ}$ were changed to a hydrophobic surface with a contact angle of $145^{\circ}{\sim}161^{\circ}$ by a FAS surface treatment. Prepared hydrophobic surface was pattered by an irradiation of UV light using shadow mask with $300\;{\mu}m$ or 3 mm dot size. Finally, the hydrophobic surface exposed to UV light was changed to a hydrophilic surface.

LPD법을 이용하여 유리 기판 위에 발수/친수 패터닝 기판을 제조하였다. 발수 표면은 거친 표면을 갖는 ZnO 박막을 FAS를 이용한 표면 개질에 의하여 만들어졌고, 친수 표면은 자외선을 조사하여 FAS를 제거함으로써 만들어졌다. Hexagonal ZnO rod는 LPD법에 의하여 ZnO seed 층이 코팅된 유리 기판 위에 수직으로 성장되었다. 침적시간이 증가함에 따라 ZnO rod의 직경과 두께는 증가하였다. 제조된 ZnO 박막의 표면구조, 두께, 결정구조, 투과율과 접촉각은 FE-SEM, XRD, UV-vis와 contact angle meter를 이용하여 측정하였다. $20^{\circ}{\sim}30^{\circ}$의 접촉각을 갖는 친수 ZnO 박막은 FAS 표면 처리에 의해 $145^{\circ}{\sim}161^{\circ}$의 접촉각을 갖는 표면으로 바뀌었다. 제조된 발수 표면은 $300\;{\mu}m$, 3 mm의 dot size를 갖는 shadow mask를 이용하여 자외선을 조사하여 패터닝 되었다. 최종적으로 자외선이 조사된 발수 표면은 친수 표면으로 바뀌었다.

Keywords

References

  1. A. Chen, A. Peng, K. Koczkur and B. Miller, "Superhydrophobic tin oxide nanoflowers", Chem. Commun. (2004) 1964 https://doi.org/10.1039/b407313d
  2. A. Nakajima, K. Abe, K. Hashimoto and T. Watanabe, "Preparation of hard super-hydrophobic films with visible light transmission", Thin Solid Films 376 (2000) 140 https://doi.org/10.1016/S0040-6090(00)01417-6
  3. Y. Xu, W.H. Fan, Z.H. Li, D. Wu and Y.H. Sun, "Antireflective silica thin films with super water repellence via a solgel process", Applied Optics 42 (2003) 108 https://doi.org/10.1364/AO.42.000108
  4. A.V. Rao, M.M. Kulkarni, D.P. Amalerkar and T. Seth, "Superhydropjobic silica aerogels based on methyltrimethoxysilane precursor", J. Non-Cryst. Solids 330 (2003) 187 https://doi.org/10.1016/j.jnoncrysol.2003.08.048
  5. H.M. Shang, Y. Wang, S.J. Limmer, T.P. Chou, K. Takahashi and G.Z. Cao, "Optically transparent superhydrophobic silica-based films", Thin Solid Films 472 (2005) 37 https://doi.org/10.1016/j.tsf.2004.06.087
  6. K.S. Hwang, J.H. Jeong, J.H. Ahn and B.H. Kim, "Hydrophilic/hydrophobic conversion of Ni-doped $TiO_2$ thin films on glass substrates", Ceramics International 32 (2006) 935 https://doi.org/10.1016/j.ceramint.2005.06.010
  7. S. Yamabi and H. Imai, "Growth conditions for wurtzite zinc oxide films in aqueous solutions", J. Mater. Chem. 12 (2002) 3773 https://doi.org/10.1039/b205384e
  8. V.R. Shinde, C.D. Lokhande, R.S. Mane and S.H. Han, "Hydrophobic and textured ZnO films deposited by chemical bath deposition: annealing effect", Appl. Surf. Sci. 245 (2005) 407 https://doi.org/10.1016/j.apsusc.2004.10.036
  9. P.R. Patil and S.S. Joshi, "Polymerized organic-inorganic synthesis of nanocrystalline zinc oxide", Mater. Chem. Phys. 105 (2007) 354 https://doi.org/10.1016/j.matchemphys.2007.04.072
  10. M.N.R. Ashfold, R.P. Doherty, N.G.N. Angwafor, D.J. Riley and Y. Sun, "The kinetics of the hydrothermal growth of ZnO nanostructures", Thin Solid Films 515 (2007) 8679 https://doi.org/10.1016/j.tsf.2007.03.122
  11. M. Li, J. Zhai, H. Liu, Y. Song, L. Jiang and D. Zhu, "Electrochemical deposition of conductive superhydrophobic Zinc oxide thin films", J. Phys. Chem. B 107 (2003) 9954 https://doi.org/10.1021/jp035562u
  12. K.H. Yoon, J.W. Choi and D.H. Lee, "Characteristics of ZnO thin films deposited onto Al/Si substrates by r.f. magnetron sputtering", Thin Solid Films 302 (1997) 116 https://doi.org/10.1016/S0040-6090(96)09568-5
  13. C.Y. Tasy, H.C. Cheng, W.T. Tung, W.H. Tuan and C.K. Lin, "Effect of Sn-doped on microstructural and optical properties of ZnO thin films deposited by sol-gel method", Thin Solid Films 517 (2008) 1032 https://doi.org/10.1016/j.tsf.2008.06.030
  14. B.H. Kong, S.K. Mohanta, D.C. Kim and H.K. Cho, "Optical and structural properties of ZnO thin films grown on various substrates by metalorganic chemical vapor deposition", Physica B: Condensed Matter 401-402 (2007) 399 https://doi.org/10.1016/j.physb.2007.08.197
  15. S. Liu, S. Zhou, Y. Wang, X. Zhang, X. Li, C. Xia, Y. Hang, J. Xu, "Epitaxial growth of ZnO thin films on $LiGaO_2$ substrates by pulsed-laser deposition", J. Cryst. Growth 292 (2006) 125 https://doi.org/10.1016/j.jcrysgro.2006.03.041
  16. Y. Akamatsu, K. Makita, H. Inaba and T. Minami, "Water-repellent coating films on glass prepared from hydrolysis and polycondensation reactions of fluoroalkyltrialkoxylsilane", Thin Solid Films 389 (2001) 138 https://doi.org/10.1016/S0040-6090(01)00901-4
  17. H.J. Jeong, D.K. Kim, S.B. Lee, S.H. Kwon and K. Kadono, "Preparation of water-repellent glass by sol-gel process using perfluoroalkylsilane and tetraethoxysilane", J. Colloid Interface Sci. 235 (2001) 130 https://doi.org/10.1006/jcis.2000.7313
  18. T.S. Lin, C.F. Wu and C.T. Hsieh, "Enhancement of water-repellent performance on functional coating by using the taguchi method", Surf. Coat. Technol. 200 (2006) 5253 https://doi.org/10.1016/j.surfcoat.2005.06.019